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A great master of mathematics passed away when David Hubert 
died in Göttingen on February the 14th, 1943, at the age of eighty-
one. In retrospect it seems to us that the era of mathematics upon 
which he impressed the seal of his spirit and which is now sinking 
below the horizon achieved a more perfect balance than prevailed 
before and after, between the mastering of single concrete problems 
and the formation of general abstract concepts. Huber t s own work 
contributed not a little to bringing about this happy equilibrium, and 
the direction in which we have since proceeded can in many instances 
be traced back to his impulses. No mathematician of equal stature 
has risen from our generation. 

America owes him much. Many young mathematicians from this 
country, who later played a considerable role in the development of 
American mathematics, migrated to Göttingen between 1900 and 
1914 to study under Hilbert. But the influence of his problems, his 
viewpoints, his methods, spread far beyond the circle of those who 
were directly inspired by his teaching. 

Hilbert was singularly free from national and racial prejudices; in 
all public questions, be they political, social or spiritual, he stood 
forever on the side of freedom, frequently in isolated opposition 
against the compact majority of his environment. He kept his head 
clear and was not afraid to swim against the current, even amidst 
the violent passions aroused by the first world war that swept so 
many other scientists off their feet. I t was not mere chance that when 
the Nazis "purged" the German universities in 1933 their hand fell 
most heavily on the Hilbert school and that Hubert 's most intimate 
collaborators left Germany either voluntarily or under the pressure 
of Nazi persecution. He himself was too old, and stayed behind; but 
the years after 1933 became for him years of ever deepening tragic 
loneliness. 

I t was another Germany in which he was born on January 23, 
1862, and grew up. Königsberg, the eastern outpost of Prussia, the 
city of Kant, was his home town. Contrary to the habit of most Ger
man students who used to wander from university to university, 
Hilbert studied at home, and it was in his home university that he 
climbed the first rungs of the academic ladder, becoming Privatdozent 
and in due time ausserordentlicher Professor. During his entire life 
he preserved uncorrupted the characteristic Baltic accent. His reputa-
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tion as a leading algebraist was well established when on Felix Klein's 
initiative he was offered a full professorship at Göttingen in 1895. 
From then on until the end of his life Hilbert remained in Göttingen. 
He was retired in 1930. 

When one inquires into the dominant influences acting upon Hil
bert in his formative years one is puzzled by the peculiarly ambiva
lent character of his relationship to Kronecker: dependent on him, 
he rebels against him. Kronecker's work is undoubtedly of paramount 
importance for Hilbert in his algebraic period. But the old gentleman 
in Berlin, so it seemed to Hilbert, used his power and authority to 
stretch mathematics upon the Procrustean bed of arbitrary philosoph
ical principles and to suppress such developments as did not conform : 
Kronecker insisted that existence theorems should be proved by ex
plicit construction, in terms of integers, while Hilbert was an early 
champion of Georg Cantor's general set-theoretic ideas. Personal rea
sons added to the bitter feeling.1 A late echo of this old feud is the 
polemic against Brouwer's intuitionism with which the sexagenarian 
Hilbert opens his first article on "Neubegründung der Mathematik" 
(1922) : Hubert 's slashing blows are aimed at Kronecker's ghost whom 
he sees rising from his grave. But inescapable ambivalence even here 
—while he fights him he follows him : reasoning along strictly intui-
tionistic lines is found necessary by him to safeguard non-intuition-
istic mathematics. 

More decisive than any other influence for the young Hilbert at 
Königsberg was his friendship with Adolf Hurwitz and Minkowski. 
He got his thorough mathematical training less from lectures, teach
ers or books, than from conversation. "During innumerable walks, 
at times undertaken day after day," writes Hilbert in his obituary 
on Hurwitz, "we roamed in these eight years through all the corners 
of mathematical science, and Hurwitz with his extensive, firmly 
grounded and well ordered knowledge was for us always the leader.w 

Closer and of a very intimate character was Hubert 's lifelong friend
ship with Minkowski. The Königsberg circle was broken up when 
Hurwitz in 1892 left for Zurich, soon to be followed by Minkowski. 
Hilbert first became Hurwitz's successor in Königsberg and then 
moved on to Göttingen. The year 1902 saw him and Minkowski 
reunited in Göttingen where a new chair of mathematics had been 
created for Minkowski. The two friends became the heroes of the 
great and brilliant period which our science experienced during the 

1 How Georg Cantor himself in his excitability suffered from Kronecker's opposi
tion is shown by his violent outbursts in letters to Mittag-Leffler; see A. Schoenflies, 
Die Krisis in Cantors mathematischem Schaffen, Acta Math. vol. 50 (1928) pp. 1-23. 
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following decade in Göttingen, unforgettable to those who lived 
through it. Klein, for whom mathematical research had ceased to be 
the central interest, ruled over it as a distant but benevolent god in 
the clouds* Too soon was this happy constellation dissolved by 
Minkowski's sudden death in 1909. In a memorial address before 
the Göttingen Gesellschaft der Wissenschaften, Hubert spoke thus 
about his friend: "Our science, which we loved above everything, had 
brought us together. It appeared to us as a flowering garden. In this 
garden there are beaten paths where one may look around at leisure 
and enjoy oneself without effort, especially at the side of a congenial 
companion. But we also liked to seek out hidden trails and discovered 
many a novel view, beautiful to behold, so we thought, and when we 
pointed them out to one another our joy was perfect." 

I quote these words not only as testimony of a friendship of rare 
depth and fecundity that was based on common scientific interest, 
but also because I seem to hear in them from afar the sweet flute of 
the Pied Piper that Hilbert was, seducing so many rats to follow him 
into the deep river of mathematics. If examples are wanted let me 
tell my own story. I came to Göttingen as a country lad of eighteen, 
having chosen that university mainly because the director of my high 
school happened to be a cousin of Hubert's and had given me a letter 
of recommendation to him. In the fullness of my innocence and ignor
ance I made bold to take the course Hilbert had announced for that 
term, on the notion of number and the quadrature of the circle. Most 
of it went straight over my head. But the doors of a new world swung 
open for me, and I had not sat long at Hubert's feet before the resolu
tion formed itself in my young heart that I must by all means read 
and study whatever this man had written. And after the first year 
I went home with Hubert's Zahlbericht under my arm, and during the 
summer vacation I worked my way through it—without any previous 
knowledge of elementary number theory or Galois theory. These were 
the happiest months of my life, whose shine, across years burdened 
with our common share of doubt and failure, still comforts my soul. 

The impact of a scientist on his epoch is not directly proportional 
to the scientific weight of his research. To be sure, Hubert's mathe
matical work is of great depth and universality, and yet his tremen
dous influence is not accounted for by it alone. Gauss and Riemann, 
to mention two other Göttingers, are certainly of no lesser stature 
than Hilbert, but they made little stir among their contemporaries 
and no "school" of devoted followers formed around them. No doubt 
this is due in part to the changing conditions of time, but the charac
ter of the men is probably more decisive. A taste for solitude, even 
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obscurity, is in no way irreconcilable with great creative gifts. But 
Hubert's was a nature filled with the zest of living, seeking intercourse 
with other people, above all with younger scientists, and delighting 
in the exchange of ideas. Just as he had learned from Hurwitz, so he 
taught his own pupils, at least those in whom he took a deeper per
sonal interest: on far-flung walks through the woods surrounding 
Göttingen or, on rainy days, as "peripatetics" in his covered garden 
walk. His optimism, his spiritual passion, his unshakable faith in the 
supreme value of science, and his firm confidence in the power of 
reason to find simple and clear answers to simple and clear questions 
were irresistibly contagious. If Kant through critique and analysis 
arrived at the principle of the supremacy of practical reason, Hubert 
incorporated, as it were, the supremacy of pure reason—sometimes 
with laughing arrogance (arrogancia in the Spanish sense), sometimes 
with the ingratiating smile of intellect's spoiled child, but most of the 
time with the seriousness of a man who believes and must believe in 
what is the essence of his own life. His enthusiasm was compatible 
with critical acumen, but not with scepticism. The snobbish attitude 
of pretended indifference, of "merely fooling around with things," or 
even of playful cynicism, were unknown in his circle. You had better 
think twice before you uttered a lie or an empty phrase to him: his 
directness could be something to be afraid of. He was enormously 
industrious and liked to quote Lichtenberg's saying: "Genius is in
dustry." Yet for all this there was light and laughter around him. He 
had great suggestive power ; it sometimes lifted even mediocre minds 
high above their natural level to astonishing, though isolated achieve
ments. I do not remember which mathematician once said to him: 
"You have forced us all to consider important those problems which 
you considered important." His vision and experience inspired con
fidence in the fruitfulness of the hints he dropped. He did not hide 
his light under a bushel. In his papers one encounters not infrequently 
utterances of pride in a beautiful or unexpected result, and in his 
legitimate satisfaction he sometimes did not give to his predecessors 
on whose ideas he built all the credit they deserved. The problems 
of mathematics are not isolated problems in a vacuum ; there pulses 
in them the life of ideas which realize themselves in concreto through 
our human endeavors in our historical existence, but forming an in
dissoluble whole transcend any particular science, Hilbert had the 
power to evoke this life; against it he measured his individual sci
entific efforts and felt responsible for it in his own sphere. In this 
sense he was a philosopher, not in the sense of adhering to one of the 
established epistemological or metaphysical doctrines. Does not in 
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such personal qualities of the academic teacher, rather than in any 
objectivities or universally accepted metaphysics, lie the answer to 
Hutchins's quest for a true universitas literarum? 

Were it my aim to give a full picture of Huber t s personality I 
should have to touch upon his attitude regarding the great powers in 
the lives of men: social and political organization, art, religion, morals 
and manners, family, friendship, love, and I should also probably 
have to indicate some of the shadows cast by so much light. I wanted 
merely to sketch the mathematical side of his personality in an at
tempt to explain, however incompletely, the peculiar charm and the 
enormous influence which he exerted. In appraising the latter one 
must not overlook the environmental factor. A German university in 
a small town like Göttingen, especially in the halcyon days before 
1914, was a favorable milieu for the development of a scientific school. 
The high social prestige of the professors and everything connected 
with the university created an atmosphere the like of which has 
hardly ever existed in America. And once a band of disciples had 
gathered around Hubert, intent on research and little worried by the 
chore of teaching, how could they fail to stimulate one another ! We 
have seen the same thing happening here at Princeton during the first 
years of the Institute for Advanced Study; there is a kind of snowball 
effect in the formation of such condensation points of scientific re
search. 

Before giving a more detailed account of Hubert 's work, it remains, 
to characterize in a few words the peculiarly Hilbertian brand of 
mathematical thinking. I t is reflected in his literary style which is 
one of great lucidity. I t is as if you were on a swift walk through a 
sunny open landscape; you look freely around, demarcation lines 
and connecting roads are pointed out to you, before you must brace 
yourself to climb the hill; then the path goes straight up, no ambling 
around, no detours. His style has not the terseness of many of our 
modern authors in mathematics, which is based on the assumption 
that printer's labor and paper are costly but the reader's effort and 
time are not. In carrying out a complete induction Hubert finds time 
to develop the first two steps before formulating the general conclu
sion from n to n + 1. How many examples illustrate the fundamental 
theorems of his algebraic papers—examples not constructed ad hoc, 
but genuine ones worth being studied for their own sake! 

In Hubert 's approach to mathematics, simplicity and rigor go hand 
in hand. The generation before him, nay even most analysts of his 
time, felt the growing demand for rigor imposed upon analysis by the 
critique of the 19th century, which culminated in Weierstrass, as a 
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heavy yoke that made their steps dragging and awkward. Hubert 
did much to change that attitude. In his famous address, Mathe
matische Problème, delivered before the Paris Congress in 1900, he 
stresses the importance of great concrete fruitful problems. "As long 
as a branch of science," says he, "affords an abundance of problems, 
it is full of life; want of problems means death or cessation of inde
pendent development. Just as every human enterprise prosecutes 
final aims, so mathematical research needs problems. Their solution 
steels the force of the investigator; thus he discovers new methods 
and viewpoints and widens his horizon." "One who without a definite 
problem before his eyes searches for methods, will probably search in 
vain." The methodical unity of mathematics was for him a matter of 
belief and experience. Again I quote his own words: "The question 
is forced upon us whether mathematics is once to face what other sci
ences long ago experienced, namely the falling apart into subdivisions 
whose representatives are hardly able to understand each other and 
whose connections for this reason will become ever looser. I neither 
wish nor believe it. The science of mathematics as I see it is an indivis
ible whole, an organism whose ability to survive rests on the connec
tion between its parts." A characteristic feature of Huber t s method is 
a peculiarly direct attack on problems, unfettered by algorithms; he 
always goes back to the questions in their original simplicity. An out
standing example is his salvage of Dirichlet's principle which had 
fallen a victim of Weierstrass's criticism, but his work abounds in 
similar examples. His strength, equally disdainful of the convulsion 
of Herculean efforts and of surprising tricks and ruses, is combined 
with an uncompromising purity. 

Hubert helped the reviewer of his work greatly by seeing to it that 
it is rather neatly cut into different periods during each of which 
he was almost exclusively occupied with one particular set of prob
lems. If he was engrossed in integral equations, integral equations 
seemed everything; dropping a subject, he dropped it for good and 
turned to something else. I t was in this characteristic way that he 
achieved universality. I discern five main periods: i. Theory of in
variants (1885-1893). ii. Theory of algebraic number fields (1893-
1898). iii. Foundations, (a) of geometry (1898-1902), (b) of mathe
matics in general (1922-1930). iv. Integral equations (1902-1912). 
v. Physics (1910-1922). The headings are a little more specific than 
they ought to be. Not all of Hubert 's algebraic achievements are 
directly related to invariants. His papers on calculus of variations 
are here lumped together with those on integral equations. And of 
course there are some overlappings and a few stray children who break 
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the rules of time, the most astonishing his proof of Waring's theorem 
in 1909. 

His Paris address on "Mathematical problems" quoted above 
straddles all fields of our science. Trying to unveil what the future 
would hold in store for us, he posed and discussed twenty-three un
solved problems which have indeed, as we can now state in retrospect, 
played an important role during the following forty odd years. A 
mathematician who had solved one of them thereby passed on to the 
honors class of the mathematical community. 
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The Collected Papers contain articles by B. L. van der Waerden, 
H. Hasse, A. Schmidt, P. Bernays, and E. Hellinger, on Hubert's 
work in algebra, in number theory, on the foundations of geometry 
and arithmetics, and on integral equations. These articles trace the 
development after Hilbert, giving ample references. The reader may 
also consult a number of Die Naturwissenschaften vol. 10 (1922) 
pp. 65-104, dedicated to Hilbert, which surveys his work prior to 
1922, and an article by L. Bieberbach, Ueber den Einfluss von Huberts 
Pariser Vortrag über uMathematische Problème" auf die Entwicklung 
der Mathemàtik in den letzten dreissig Jahren, Die Naturwissen
schaften vol. 18 (1930) pp. 1101-1111. O. Blumenthal wrote a life of 
Hilbert (Collected Papers, vol. 3, pp. 388-429). 

I omit all quotations of literature covered by these articles. 

THEORY OF INVARIANTS 

The classical theory of invariants deals with polynomials J 
= J(xi • • • xn) depending on the coefficients xi, • • • , xn of one or 
several ground forms of a given number of arguments i)i, • • • , ijg. 
Any linear substitution s of determinant 1 of the g arguments in
duces a certain linear transformation U(s) of the variable coefficients 
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xi, • • • , xn, x —•#'= U(s)x, whereby J~J(x\ • • • xn) changes into a 
new form J(x{ • • • xn' )*=J*(xi * • • xn). J is an invariant if /* = / 
for every s. (The restriction to unimodular transformations s enables 
one to avoid the more involved concept of relative invariants and to 
remove the restriction to homogeneous polynomials, with the con
venient consequence that the invariants form a ring.) The classical 
problem is a special case of the general problem of invariants in which 
s ranges over an arbitrary given abstract group T and 5—>U(s) is any 
representation of that group (that is, a law according to which every 
element s of T induces a linear transformation U(s) of the n variables 
Xi, • • • , xn such that the composition of group elements is reflected 
in composition of the induced transformations). The development be
fore Hubert had led up to two main theorems, which however had 
been proved in very special cases only. The first states that the in
variants have a finite integrity basis, or that we can pick a finite number 
among them, say ii, • • • , im, such that every invariant / is expressi
ble as a polynomial in ii, * • • , im. An identical relation between the 
basic invariants ii, • • • , im is a polynomial F{zi • • • zm) of m inde
pendent variables Zi, • • • , zm which vanishes identically by virtue of 
the substitution 

«1 «= *l(*l ' * * Xn), • ' • , Zm = im(Xi • • • Xn). 

The second main theorem asserts that the relations have a finite ideal 
basis, or that one can pick a finite number among them, say 
Fu • • • , Fh, such that every relation F is expressible in the form 

(l) F - Gift + • • • + Q*Fk, 

the Qi being polynomials of the variables z\f • • • , zm. 
I venture the guess that Hubert first succeeded in proving the sec

ond theorem. The relations F form a subset within the ring 
k[zi • • • zm] of all polynomials of Zi, • • • , zm the coefficients of 
which lie in a given field k. When Hubert found his simple proof he 
could not fail to notice that it applied to any set of polynomials S 
whatsoever and he thus discovered one of the most fundamental 
theorems of algebra, which was instrumental in ushering in our mod
ern abstract approach, namely: 

(A) Every subset S of the polynomial ring k[zi • • • zm] has a finite 
ideal basis. 

Is it bad metaphysics to add that his proof turned out so simple 
because the proposition holds in this generality? The proof proceeds 
by the adjoining of one variable Zi after the other, the individual step 
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being taken care of by the statement: If a given ring r satisfies the 
condition (P) : that every subset of r has a finite ideal basis, then 
the ring r[z] of polynomials of a single variable z with coefficients 
in r satisfies the same condition (P). Once this is established one gets 
not only (A) but also an arithmetic refinement discussed by Hubert 
in which the field k of rational numbers is replaced by the ring of ra
tional integers. 

The subset S of relations to which Hubert applies his theorem (A) 
is itself an ideal, and thus the ideal {F\, • • • , Fh}, that is, the totality 
of all elements of the form (1), Qi e k[zi • • • zm], not only contains, 
but coincides with, 2 . The proof, however, works even if S is not an 
ideal, and yields at one stroke (1) the enveloping ideal {2} of S and 
(2) the reduction of that ideal to a finite basis, {S} = {Fu • • • , Fh}. 

Construction of a full set of relations Fi, • • • , Fh would finish the 
investigation of the algebraic structure of the ring of invariants were 
it true that any relation F can be represented in the form (1) in one 
way only. But since, generally speaking, this is not so, we must ask 
for the "vectors of polynomials" M—{Mi, • • • , Mh) for which 
M1F1+ • • • +MhFh vanishes identically in z (syzygy of first order). 
These linear relations M between Fi, • • • , Fh again form an ideal to 
which Theorem (A) is applicable, the basis of the M thus obtained 
giving rise to syzygies of the second order. To the first two main 
theorems Hubert adds a third to the effect that if redundance is 
avoided, the chain of syzygies breaks off after at most m steps. 

All this hangs in the air unless we can establish the first main theo
rem, which is of an altogether different character because it asks for 
an integrity, not an ideal basis. Discussing invariants we operate in 
the ring kx — k[xi • • • xn] of polynomials of X\, • • • , xn in a given 
field k. Hubert applies his Theorem (A) to the totality 3 of all in
variants J f or which J(0, • • • , 0 ) = 0 (a subring of kx which, by the 
way, is not an ideal!) and thus determines'an ideal basis ii, • • • , im 

of 3. Each of the invariants i—ir may be decomposed into a sum 
%={(*) +i<2> + • • • of homogeneous forms of degree 1, 2, • • • , and 
as the summands are themselves invariants, the ir may be assumed 
to be homogeneous forms of degrees *vjâl. Hubert then claims that 
the ii, • • • » im constitute an integrity basis for all invariants. I use a 
finite group T consisting of N elements 5 (although this case of the 
general problem of invariants was never envisaged by Hubert him
self) in order to illustrate the idea by which the transition is made. 
Every invariant / is representable in the form 

(2) J = C + Liii + • • • + Lmim (Lr £ kx) 
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where c is the constant 7(0). If / is of degree v one may lop off in Lr 

all terms of higher degree than v — vr without destroying the equation. 
If it were possible by some process to change the coefficients L in (2) 
into invariants, the desired result would follow by induction with re
spect to the degree of / . In the case of a finite group such a process is 
readily found: the process of averaging. The linear transformation 
U(s) of the variables xi, • • • , xn induced by s carries (2) into 

J = c + Lvh + • • • +£»-fm. 

Summation over s and subsequent division by the number N yields 
the relation 

J = c + Li i i + • • • + Lmim 

where 

It is of the same nature as (2), except for the decisive fact that accord
ing to their formation the new coefficients L* are invariants.2 

Actually Hubert had to do, not with a finite group but with the 
classical problem in which the group T consists of all linear trans
formations ^ of g variables 771, • • • , rjg, and instead of the averaging 
process he had to resort to a differentiation process invented by 
Cayley, the so-called Cayley Q-process, which he skillfully adapted 
for his end. (It is essential in Cayley's process that the g2 components 
of the matrix 5 are independent variables; instead of the absolutely 
invariant polynomials J one has to consider relatively invariant 
homogeneous forms each of which has a definite degree and weight.) 

Hilbert's theorem (A) is the foundation stone of the general theory 
of algebraic manifolds. Let us now think of k more specifically as the 
field of all complex numbers. I t seems natural to define an algebraic 
manifold in the space of n coordinates xi, • • • , xn by a number of 
simultaneous algebraic equations / i = 0, • • • , fh — 0 (ƒ* £ kx). Accord
ing to Theorem (A), nothing would be gained by admitting an infinite 
number of equations. Let us denote by Z(/i, • • • , fh) the set of points 
x = (xi, ' - • , xn) where ƒ1, • • • , ƒ * and hence all elements of the ideaf 
7 = {fu • • • » fh} vanish simultaneously, g vanishes on Z(fi, • • • , fh) 
whenever g e {ƒ1, • • • , f h}, but the converse is not generally true. For 

2 The example of finite groups is used here as an illustration only. Indeed, a direct 
elementary proof of the first main theorem for finite groups that makes no use of 
Hilbert's principle (A) has been given by E. Noether, Math. Ann. vol. 77 (1916) 
p. 89. In dividing by N we have assumed the field k to be of characteristic zero. 



622 DAVID HILBERT AND HIS MATHEMATICAL WORK [September 

instance Xi vanishes wherever x\ does, and yet Xi is not of the form 
x\-q(xi • • • xn). The language of the algebraic geometers distinguishes 
here between the simple plane #1 = 0 and the triple plane, although 
the point set is the same in both cases. Hence what they actually 
mean by an algebraic manifold is the polynomial ideal and not the 
point set of its zeros. But even if one cannot expect that every poly
nomial g vanishing on Z(fi, • • • , ƒ*) =Z(J) is contained in the ideal 
J—{fu • • • > fh} one hopes that at least some power of g will be. 
Hubert's "NuUstellensatz" states that this is true, at least if k is the 
field of complex numbers. It holds in an arbitrary coefficient field k 
provided one admits points x the coordinates x% of which are taken 
from k or any algebraic extension ofk. Clearly this NuUstellensatz goes 
to the root of the very concept of algebraic manifolds.8 

Actually Hubert conceived it as a tool for the investigation of in
variants. As we are now dealing with the full linear group let us con
sider homogeneous invariants only and drop the adjective homogene
ous. Exclude the constants (the invariants of degree 0). Suppose we 
have ascertained /x non-constant invariants Ji, • • • , JM such that 
every non-constant invariant vanishes wherever they vanish simul
taneously. An ideal basis of the set 3 of all non-constant invariants 
certainly meets the demand, but a system Ti, • • • , /M may be had 
much more cheaply. Indeed, by a beautiful combination of ideas 
Hubert proves that if for a given point x = x° there exists at all an 
invariant which neither vanishes for x=x° nor reduces to a constant, 
then there exists such an invariant whose weight does not exceed a 
certain a priori limit W (for example, W=9n(3n + l)s for a ternary 
ground form of order n). Hence the Ji, • • • , JM may be chosen from 
the invariants of weight not greater than W, and they thus come 
within the grasp of explicit algebraic construction. 

When Hubert published his proof for the existence of a finite ideal 
basis, Gordan the formalist, at that time looked upon as the king of 
invariants, cried out: "This is not mathematics, it is theology !" 
Hubert remonstrated then, as he did all his life, against the dis
paragement of existential arguments as "theology," but we see how, 
by digging deeper, he was able to meet Gordan's constructive de
mands. By combining the NuUstellensatz with the Cayley process he 
further showed that every invariant / is an integral algebraic (though 
not an integral rational) function of / i , • • • , 7M, satisfying an equa
tion 

3 B. L. van der Waerden's book Moderne Algebra, vol. 2, 2nd éd., 1940, gives on 
pp. 1-72 an excellent account of the general algebraic concepts and facts with which 
we are here concerned. 
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/• + Gi/6-1 + • • • + G9 = 0 

in which the G's are polynomials of Ji, • • • , /„. Hence it must be 
possible by suitable algebraic extensions to pass from Ji, • • • , /M to 
a full integrity basis. From there on familiar algebraic patterns such 
as were developed by Kronecker and as are amenable to explicit con
struction may be followed. 

After the formal investigations from Cayley and Sylvester to 
Gordan, Hilbert inaugurated a new epoch in the theory of invariants. 
Indeed, by discovering new ideas and introducing new powerful meth
ods he not only brought the subject up to the new level set for algebra 
by Kronecker and Dedekind, but made such a thorough job of it 
that he all but finished it, at least as far as the full linear group is con
cerned. With justifiable pride he concludes his paper, Ueber die vollen 
Invariantensysterney with the words: "Thus I believe the most im
portant goals of the theory of the function fields generated by in
variants have been attained," and therewith quits the scene.4 

Of later developments which took place after Hilbert quit, two 
main lines seem to me the most important: (1) The averaging process, 
which we applied above to finite groups, carries over to continuous 
compact groups. By this transcendental process of integration over 
the group manifold, Adolf Hurwitz treated the real orthogonal group. 
The method has been of great fertility. The simple remark that in
variants for the real orthogonal group are eo ipso also invariant under 
the full complex orthogonal group indicates how the results can be 
transferred even to non-compact groups, in particular, as it turns out, 
to all semi-simple Lie groups. (2) Today the theory of invariants for 
arbitrary groups has taken its natural place within the frame of the 
theory of representations of groups by linear substitutions, a develop
ment which owes its greatest impulse to G. Frobenius. 

Although the first main theorem has been proved for wide classes 
of groups T we do not yet know whether it holds for every group. 
Such attempts as have been made to establish it in this generality 
were soon discovered to have failed. A promising line for an algebraic 
attack is outlined in item 14 of Hilbert's Paris list of Mathematical 
Problems. 

Having dwelt in such detail on Hubert's theory of invariants, we 
must be brief with regard to his other, more isolated, contributions to 
algebra. The first paper in which the young algebraist showed his real 

41 recommend to the reader's attention a brief résumé of his invariant-theoretic 
work which Hilbert himself wrote for the International Mathematical Congress held 
at Chicago in conjunction with the World Fair in 1893; Collected Papers, vol. 2, 
item 23. 
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mettle concerns the conditions under which a form with real coeffi
cients is representable as a sum of squares of such forms, in particular 
with the question whether the obviously necessary condition that the 
form be positive for all real values of its arguments is sufficient. By 
ingenious continuity arguments and algebraic constructions Hubert 
finds three special cases for which the answer is affirmative, among 
them of course the positive definite quadratic forms, but counter
examples for all other cases. Similar methods recur in two papers 
dealing with the attractive problem of the maximum number of real 
ovals of an algebraic curve or surface and their mutual position. 
Hubert conjectured that, irrespective of the number of variables, 
every rational function with real (or rational) coefficients is a sum 
of squares of such functions provided its values are positive for 
real values of the arguments; and in his Grundlagen der Geometrie 
he pointed out the role of this fact for the geometric constructions 
with ruler and "Eichmass." Later O. Veblen conceived, as the basis 
of the distinction between positive and negative in any field, the 
axiom that no square sum equals zero. Independently of him, E. Artin 
and O. Schreier developed a detailed theory of such "real fields," and 
by means of it Artin succeeded in proving Hubert 's conjecture.6 

In passing I mention Hubert 's irreducibility theorem according to 
which one may substitute in an irreducible polynomial suitable in
tegers for all of the variables but one without destroying the irreduci
bility of the polynomial, and his paper on the solution of the equation 
of ninth degree by functions with a minimum number of arguments. 
They became points of departure for much recent algebraic work 
(E. Noether, N. Tschebotareff and others). Finally, it ought to be 
recorded that on the foundations laid by Hubert a detailed theory of 
polynomial ideals was erected by E. Lasker and F. S. Macaulay which 
in turn gave rise to Emmy Noether's general axiomatic theory of 
ideals. Thus in the field of algebra, as in all other fields, Hilbert's con
ceptions proved of great consequence for the further development. 

ALGEBRAIC NUMBER FIELDS 

When Hubert, after finishing off the invariants, turned to the the
ory of algebraic number fields, the ground had been laid by Dirichlet's 
analysis of the group of units more than forty years before, and by 
Kummer's, Dedekind's and Kronecker's introduction of ideal di
visors. The theory deals with an algebraic field K over the field k 

6 O. Veblen, Trans. Amer. Math. Soc. vol. 7 (1906) pp. 197-199. E. Artin and 
O. Schreier, Abh. Math. Sem. Hamburgischen Univ. vol. 5 (1926) pp. 85-99; E. Artin, 
ibid. pp. 100-115. 
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of rational numbers. One of the most important general results be
yond the foundations had been discovered by Dedekind, who showed 
that the rational prime divisors of the discriminant of K are at the 
same time those primes whose ideal prime factors in K are not all 
distinct (ramified primes). I being a rational prime, the adjunction 
to K of the Zth root of a number a in K yields a relative cyclic field 
K = K(<X1/1) of degree I over K, provided K contains the Ith root of unity 
ç — ̂ iri/i (anci according to Lagrange, the most general relative cyclic 
field of degree I over K is obtained in this fashion). It may be said that 
it was this circumstance which forced Kummer, as he tried to prove 
Fermat's theorem of the impossibility of the equation al+fil — yl, to 
pass from the rational ground field k to the cyclotomic field Ki — k(Ç) 
and then to conceive his ideal numbers in Ki and to investigate 
whether the number of classes of equivalent ideal numbers in Ki is 
prime to /. Hubert sharpened his tools in resuming Kummer's study 
of the relative cyclic fields of degree / over Kit which he christened 
"Kummer fields." 

His own first important contribution was a theory of relative Galois 
fields K over a given algebraic number field /c. His main concern is 
the relation of the Galois group T of K/K to the way in which the 
prime ideals of K decompose in K. Given a prime ideal ty in K of rela
tive degree ƒ, those substitutions 5 of V for which sty = $ form the 
splitting group. As always in Galois theory one constructs the corre
sponding subfield of K/K (splitting field), to which a number of K 
belongs if it is invariant under all substitutions of the splitting group. 
The substitutions / which carry every integer A in if into one, /A, 
that is congruent to A mod ty form an invariant subgroup of the 
splitting group of index ƒ, called the inertial group, and the corre
sponding field (inertial field) is sandwiched in between the splitting 
field and K. Let p be the prime ideal in K into which ty goes, and tye 

the exact power of ty by which p is divisible. I indicate the nature of 
Hubert 's results by the following central theorem of his: In the 
splitting field of $ the prime ideal p in K splits off the prime factor 
p* = tye of degree 1 (therefore the name !) ; in passing from the splitting 
to the inertial field p* stays prime but its degree increases to ƒ ; in 
passing from the inertial to the full field ÜT, p* breaks up into e equal 
prime factors ty of the same degree ƒ. For later application I add the 
following remarks. If ty goes into p in the first power only, e = 1 (which 
is necessarily so provided p is not a divisor of the relative discriminant 
of K/K) , then the inertial group consists of the identity only. In that 
case the theory of Galois's strictly finite fields shows that the splitting 
group is cyclic of order ƒ and that its elements 1, s, s2

t • • • , s'"1 are 
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uniquely determined by the congruences 

*A s Ap, 52A s Ap2, • • • (mod $) 

holding for every integer A. Here P is the number of residues in K 
modulo p and thus Pf the number of residues in K modulo $. Today 
we call s=(r($) the Frobenius substitution of $; it is of paramount 
importance that one particular generating substitution of the splitting 
group may thus be distinguished among all others. One readily sees 
that for any substitution u of the Galois group a(u^) ^u^-crity) -u. 
Thus if the Galois field K/K is Abelian, the substitution <r($) =(r(w$) 
depends on p only and may be denoted by (f ). 

In 1893 the Deutsche Mathematiker-Vereinigung asked Hubert and 
Minkowski to submit within two years a report on number theory. 
Minkowski dropped out after a while. Hubert's monumental report 
Die Theorie der algebraischen Zahlkörper appeared in the Jahres-
berichte of 1896 (the preface is dated April 1897). What Hubert 
accomplished is infinitely more than the Vereinigung could have ex
pected. Indeed, his report is a jewel of mathematical literature. Even 
today, after almost fifty years, a study of this book is indispen
sable for anybody who wishes to master the theory of algebraic num
bers. Filling the gaps by a number of original investigations, Hubert 
welded the theory into an imposing unified body. The proofs of all 
known theorems he weighed carefully before he decided in favor of 
those "the principles of which are capable of generalization and the 
most useful for further research." But before such a selection could 
be made that "further researchn had to be carried out! Meticulous 
care was given to the notations, with the result that they have been 
universally adopted (including, to the American printer's dismay, the 
German letters for ideals!) He greatly simplified Kummer's theory, 
which rested on very complicated calculations, and he introduced 
those concepts and proved a number of those theorems in which we 
see today the foundations of a general theory of relative Abelian 
fields. The most important concept is the norm residue symbol, a 
pivotal theorem on relative cyclic fields, his famous Satz 90 (Collected 
Works, vol. I, p. 149). From the preface in which he describes the 
general character of number theory, and the topics covered by his 
report in particular, let me quote one paragraph : 

"The theory of number fields is an edifice of rare beauty and har
mony. The most richly executed part of this building, as it appears 
to me, is the theory of Abelian fields which Kummer by his work on 
the higher laws of reciprocity, and Kronecker by his investigations 
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on the complex multiplication of elliptic functions, have opened up to 
us. The deep glimpses into the theory which the work of these two 
mathematicians affords reveals at the same time that there still lies 
an abundance of priceless treasures hidden in this domain, beckoning 
as a rich reward to the explorer who knows the value of such treasures 
and with love pursues the art to win them." 

Hubert himself was the miner who during the following two years 
brought to light much of the hidden ore. The analogy with the corre
sponding problems in the realm of algebraic functions of one variable 
where Riemann's powerful instruments of topology and Abelian in
tegrals are available was for him a guiding principle throughout (cf. 
his remarks in item 12 of his Paris Problems). It is a great pleasure to 
watch how, step by step, advancing from the special to the general, 
Hubert evolves the adequate concepts and methods, and the essential 
conclusions emerge. I mention his great paper dealing with the rela
tive quadratic fields, and his last and most important Ueber die The
orie der relativ Abelschen Zahlkörper. On the basis of the examples he 
carried through in detail, he conceived as by divination and formu
lated the basic facts about the so-called class fields. Whereas Hubert's 
work on invariants was an end, his work on algebraic numbers was 
a beginning. Most of the labor of such number theorists of the last 
decades, as Furtwângler, Takagi, Hasse, Artin, Chevalley, has been 
devoted to proving the results anticipated by Hubert. By deriving 
from the f-function the existence of certain auxiliary prime ideals, 
Hubert had leaned heavily on transcendental arguments. The sub
sequent development has gradually eliminated these transcendental 
methods and shown that though they are the fitting and powerful 
tool for the investigation of the distribution of prime ideals they are 
alien to the problem of class fields. In attempting to describe the main 
issues I shall not ignore the progress and simplification due to this 
later development. 

Hubert's theory of norm residues is based on the following discov
eries of his own: (1) he conceived the basic idea and defined the norm 
residue symbol for all non-exceptional prime spots; (2) he realized the 
necessity of introducing infinite prime spots; (3) he formulated the 
general law of reciprocity in terms of the norm symbol; (4) he saw 
that by means of that law one can extend the definition of the norm 
symbol to the exceptional prime spots where the really interesting 
things happen.—It was an essential progress when E. Artin later (5) 
replaced the roots of unity by the elements of the Galois group as 
values of the residue symbol. In sketching Hubert's problems I shall 
make use of this idea of Artin's and also of the abbreviating language 
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of (6) Hensel's p-adic numbers and (7) Chevalley's idèles* 
As everybody knows an integer a indivisible by the prime p?* 2 is 

said to be a quadratic residue if the congruence x2^a (mod p) is sol
vable. Gauss introduced the symbol (f) which has the value + 1 or — 1 
according to whether a is a quadratic residue or non-residue mod p, 
and observed that it is a character, (|) • (~) = (^r). Indeed, the p resi
dues modulo p—as whose representatives one may take 0, 1, • • • , 
(p — 1)—form afield, and after exclusion of 0 a group in which the 
quadratic residues form a subgroup of index 2. Let K = k(bl/2) be a 
quadratic field which arises from the rational ground field k by ad
junction of the square root of the rational number b. An integer a5*0 
is called by Hubert a p-adic norm in K if modulo any given power 
of p it is congruent to the norm of a suitable integer in K. He sets 
( ~ ) = + l if a is p-adic norm, —1 in the opposite case, and finds 
that this p-adic norm symbol again is a character. The investigation 
of numbers modulo arbitrarily high powers of p was systematized by 
K. Hensel in the form of his p-adic numbers, and I repeat Hubert 's 
definition in this language: "The rational number a =^0, or more gen
erally the p-adic number ap5^0, is a p-adic norm in K if the equation 

ap = Nm (x + yb112) = x2 — by2 

has a p-adic solution x=xp, y=yP; the norm symbol (apt K) equals 
+ 1 or —1 according to whether or not ap is (p-adic) norm in K." 
The p-adic numbers form a field k{p) and after exclusion of 0 a multi
plicative group Gp in which, according to Hubert 's result, the p-adic 
norms in K form a subgroup of index 2 or 1. The cyclic nature of the 
factor group is the salient point. One easily finds that the p-adic 
squares form a subgroup G\ of index 4 if p9^2, of index 8 if p = 2, 
and thus the factor group Gp/G% is not cyclic and could not be de
scribed by a single character. Of course every p-adic square is a p-adic 
norm in K. Both steps, the substitution of J£-norms for squares and 
the passage from the modulus p to arbitrarily high powers of p ; the 
first step amounting to a relaxation, the second to a sharpening of 
Gauss's condition for quadratic residues; are equally significant for 
the success of Hubert 's definition. 

Every p-adic number ap9^0 is of the form ph-ep where ep is a p-adic 
unit, and thus ap is of a definite order h (at p). An ordinary rational 
number a coincides with a definite p-adic number Ip(a) ~ap. Here Ip 

symbolizes a homomorphic projection of k into k(p) : 

Ip(a + a') = IM + Ip(a'), Ip(aa') = Ip(a)- Ip(a'). 
6 The latest account of the theory is C. Chevalley's paper La théorie du corps de 

classes, Ann. of Math. vol. 41 (1940) pp. 394-418. 
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The character (~^) is identical with ( I ^ a ) , K). 
We come to Hubert 's second discovery : he realized that simple laws 

will not result unless one adds to the "finite prime spots" p one infinite 
prime spot q. By definition the g-adic numbers are the real numbers 
and Iq(a) is the real number with which the rational number a co
incides. Hence the real number aq is a q-adic norm in K if the equation 
Q/q ~-~ X — by2 has a solution in real numbers x, y. Clearly if b>0 or K 
is real, this is the case for every aq; if however b < 0 or K is imaginary, 
only the positive numbers aq are g-adic norms. Hence 

(aq, K) = 1 if K real; (aqy K) = sgn aq if K imaginary. 

The fact that the norm symbol is a character is thus much more easily 
verified for the infinite prime spot than for the finite ones. 

Hubert 's third observation is to the effect that Gauss's reciprocity 
law with its two supplements may be condensed into the elegant 
formula 

(3) n(/pW.Jo-n(^-i. 
V P \ P / 

the product extending over the infinite and all finite prime spots p. 
There is no difficulty in forming this product because almost all fac
tors (that is, all factors with but a finite number of exceptions) equal 
unity. Indeed, if the prime p does not go into the discriminant of K, 
then (apy K) = l for every £-adic unit ap. Formula (3) is the first real 
vindication for the norm residue idea, which must have given Hubert 
the assurance that the higher reciprocity laws had to be formulated 
in terms of norm residues. 

A given rational number a assigns to every prime spot p a £-adic 
number ap = Ip(a). On which features of this assignment does one rely 
in forming the product (3) ? The obvious answer is given by Cheval-
ley's notion of idèle : an idèle a is a function assigning to every prime 
spot p a £-adic number ap?*0 which is a £-adic unit for almost all 
prime spots p. The idèles form a multiplicative group Jk. By virtue 
of the assignment ap = Ip(a) every rational number a?*0 gives rise to 
an idèle, called the principal idèle a. With the idèles a at our disposal 
we might as well return to the notation ( 5 ^ ) for (ap, K). The formula 

(4) **(a) = (a, K) = Ü <*„ *) - JJ (—) 
v v \ P / 

defines a character <£#, the norm character, in the group Jk of all 
deles. The reciprocity law in Hubert 's form (3) maintains that 
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(5) (a, 20 - 1 

if a is principal. By the very definition of the norm symbol (ap, K) the 
same equation holds if a is a norm in Kf that is, if ap is a £-adic norm 
in K for every prime spot p. Two idèles a, a ' are said to be equivalent, 
a~a', if their quotient a'a~l is principal. Let us denote by N m / # the 
group of all idèles which are equivalent to norms in K. Then (5) holds 
for all idèles a of N m / ^ ; it would be good to know that it holds for 
no other idèles, or, in other words, that N m / x is a subgroup of Jk of 
index 2. 

The stage is now reached where the experiences gathered for a 
quadratic field K over the rational ground field k may be generalized 
to any relative Abelian field K over a given algebraic number field 
K = k(6). First a word about the infinite prime spots of K. The defining 
equation ƒ (0) = 0, an irreducible equation in k of some degree m, has m 
distinct roots 0', 0", • • • , 0(w) in the continuum of complex numbers. 
Suppose that r of them are real, say 0', • • • , 0(r). Then each element 
a of K has its r real conjugates a', • • • , a ( r ), and a(t) arises from a 
by a homomorphic projection I ( 0 of K into the field of all real numbers, 

«->«<«> = /(«>(«) (*« 1, . . • , r). 

We therefore speak of r real infinite prime spots q', • • • , q(r) with the 
corresponding projections I' = Iq>, • • • , I ( r ) ; the fields #c(q'), • • • , 
ic(q(r)) are identical with the field of all real numbers. Thus a is 
an nth q'-adic power if the equation a ' = £ / n has a real solution £'. 
One sees that this imposes a condition only if n is even, and then re
quires a' to be positive. (In the complex domain the equation is 
always solvable whether n be even or odd, and that is the reason why 
we ignore the complex infinite prime spots altogether.) 

The finite prime spots are the prime ideals p of K. In studying a 
Galois field K/K of relative degree n we first exclude the ramified ideals 
p which go into the relative discriminant of K/K. An unramified ideal 
p of K factors in K into a number g of distinct prime ideals $1 • • • tyg 

of relative degree ƒ, fg = n. I t is easily seen that a p-adic number 
CVJJT̂ O is a p-adic norm in K if and only if its order (at p) is a multiple 
of ƒ. In particular, the p-adic units are norms. Thus we encounter a 
situation which is essentially simpler than the one taken care of by 
Gauss's quadratic residue symbol : the norm character of ap depends 
only on the order i at p of ctp. I t is now clear how to proceed : we choose 
a primitive fth root of unity f and define (ap, K) = f * if ap is of order i. 
This function of a$ 5^0 is a character which assumes the value 1 for 
the norms and the norms only. But here is the rub: there is no alge
braic property distinguishing the several primitive fth roots of unity 
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from one another. Thus the choice of £* among them remains arbi
trary. One could put up with this if one dealt with one prime ideal 
only. But when one has to take all prime spots simultaneously into 
account, as is necessary in forming products of the type (4), then the 
arbitrariness involved in the choice of f for each p will destroy all 
hope of obtaining a simple reciprocity law like (5). I shall forego de
scribing the devices by which Eisenstein, Kummer, Hubert, extri
cated themselves from this entanglement. By far the best solution 
was found by Artin: if K/K is Abelian, then the Frobenius substitu
tion (f ) is uniquely determined by K and p and is an element of 
order ƒ of the Galois group V of K/K. Let this element of the Galois 
group replace J" in our final definition of the p-adic norm symbol: 

/a, K\ /Ky 
(6) (a), K) = I J = ( — J if ap is of order i at p. 

We could now form for any idèle a the product 

n(^«-n(—)-<«.*) 
extending over all finite and (real) infinite prime spots p and formu
late the reciprocity law asserting that (a, 2?) = 1 for any principal 
idèle a—had we not excluded certain exceptional prime spots in our 
definition of (ap, K), namely the infinite prime spots and the ramified 
prime ideals. In the special case he investigated Kummer had suc
ceeded in obtaining the correct value of (a$, K) for the exceptional p 
by extremely complicated calculations. Hubert 's fourth discovery is a 
simple and ingenious method of circumventing this formidable ob
stacle which blocked the road to further progress. Let us first restrict 
ourselves to idèles a which are nth powers at our exceptional prime 
spots; in other words, we assume that the equation ap = £5 is solvable 
for the p-adic values ap of a at this finite number of prime spots. 
There is no difficulty in defining (a, K) under this restriction : 

(a, K) = II'(«» *), 

the product extending, as indicated by the accent, over the non-ex
ceptional prime spots only, for which we know what (cep, K) means. 
Under the same restriction we prove (with Artin) the reciprocity law 

(7) (a, K) = 1 if a is principal, 

and observe that by its very definition (a, K) = 1 if a is norm. We 
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now return to an arbitrary idèle a. It is easily shown that there exists 
an equivalent idèle a*~a which is an nth. power at all exceptional 
prime spots, but of course there will be plenty of them. However, the 
restricted law of reciprocity insures that 

(a*, K) - II'(«*. *) 

has the same value for every one of the a*'s, and it is this value which 
we now denote by (a, K). This definition adopted, the reciprocity law 
(7) and the statement that (a, K) = 1 for every norm a follow at once 
without restriction. Thus the reciprocity law itself is made the tool 
for getting the exceptional prime spots under control! 

Once (a, K) is known for every idèle a we can compute (ap, K) for 
a given prime spot p and a given p-adic number ap 5̂ 0 as the value of 
(a, K) for that "primary" idèle, also denoted by ap, which equals ap at 
p and 1 at any other prime spot. (The idèle a is the product of its 
primary components, a =11 pap.) One expects the following two prop
ositions to hold : 

I. (ap, K) = 1 if and only if ap is a p-adic norm. 
II. Given a prime ideal p, (ap, K) = 1 for every p-adic unit a$ if and 

only if p is unramified. 
The direct parts of I and II : 
(Io) ap = norm implies (ap, JST) = 1 ; 
(II0) p unramified implies (ap, K) = 1 for every p-adic unit ap, 

were settled above. The converse statement of I o is trivial for the non-
exceptional prime spots; but owing to the indirect definition of the 
norm symbol for the exceptional prime spots, the proofs of the converse 
of Io for the exceptional spots and of the converse of Ho are rather in
tricate. From II we learn that for none of the ramified prime ideals p 
does the norm character of ap depend on the order of ap only: this 
simple feature which makes the definition (6) possible is limited to 
non-ramified p. One would also expect: 

III. If the principal idèle a is an idèle norm in K, then the number a 
is norm of a number in K. 

This is true for cyclic fields K/K, but in general not for Abelian 
fields. 

Let us again denote by NmJ* the subgroup in JK of the idèles which 
are equivalent to norms. Then the norm symbol <1>K(O0 = (a, K) de
termines a homomorphic mapping of the factor group JK/NmJK into 
the Galois group of K/K. One would expect that this mapping is one-
to-one: 
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IV. By means of the norm symbol the factor group /«/Nm JK is iso-
morphically mapped onto the Galois group of K/K. 

I, II, IIIC (the subscript c indicating restriction to cyclical fields) 
and IV are the main propositions of what one might call the norm 
theory of relative Abelian fields. They refer to a given field K/K. 

There is a second part of the theory, the class field theory proper, 
which is concerned with the manner in which all possible relative 
Abelian fields K over K are reflected in the structure of the group JK 

of idèles in K. Each such field K determines, as we have seen, a sub
group Nm/x of JK of finite index. The question arises which subgroups 
J* of JK are generated in this way by Abelian fields K/K. Clearly the 
following conditions are necessary : 

(1) Every principal idèle is in J*. 
(2) There is a natural number n such that every nth power of an 

idèle is in J?. 
(3) There is a finite set S of prime spots such that a is in J* pro

vided a is a unit at every prime spot and equals 1 at the prime spots 
of S. 

The main theorem concerning class fields states that these condi
tions are also sufficient. 

V. Given a subgroup J* of JK fulfilling the above three conditions (and 
therefore, as one readily verifies, of finite index), there exists a uniquely 
determined Abelian field K/K such that J«* = Nm/jc. 

We divide the idèles of K into classes by throwing two idèles into 
the same class if their quotient is in Jf. Then JK/J* is the class group 
and K is called the corresponding class field. The most important ex
ample results if one lets J* consist of the unit idèles a whose values a$ 
are p-adic units at every prime spot p.7 Then the classes may be de
scribed as the familiar classes of ideals : two ideals are put in the same 
class if their quotient is a principal ideal (a) springing from a number 
a positive at all real infinite prime spots. The corresponding class 
field K, the so-called absolute class field, is of relative discriminant 1, 
and the largest unramified Abelian field over K (Theorem II). Its de
gree n over K is the class number of ideals, its Galois group isomorphic 
to the class group of ideals in K (Theorem IV). ƒ being the least power 
of p which lies in the principal class, p decomposes into n/f distinct 
prime ideals in K, each of relative degree ƒ. This last statement does 
nothing but repeat the norm definition of the class field. Hence the 
way in which $ factors in K depends only on the class to which p be
longs. The easiest way of extending the theory from the case with no 
ramified prime ideals, which was preponderant in Hubert's thought, 

7 At the (real) infinite prime spots the positive numbers are considered the units. 
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to Takagi's ramified case is by substituting idèles for ideals. Hubert 
also stated that every ideal in K becomes a principal ideal in the ab
solute class field. I t is today possible to show that this is so, by argu
ments, however, which are far from being fully understood, because 
this question transcends the domain of Abelian fields. 

As was stated above, Hubert did not prove these theorems in their 
full generality, but taking his departure from Gaussa theory of genera 
in quadratic fields and Rummer's investigations he worked his way 
gradually up from the simplest cases, developing as he went along the 
necessary machinery of new concepts and propositions about them 
until he could survey the whole landscape of class fields. We cannot 
at tempt here to give an idea of the highly involved proofs. The com
pletion of the work he left to his successors. The day is probably 
still far off when we shall have a theory of relative Galois number 
fields of comparable completeness. 

Kronecker had shown, and Hilbert found a simpler proof for the 
fact, that Abelian fields over the rational ground field k are neces
sarily subfields of the cyclotomic fields, and are thus obtained from 
the transcendental function euix by substituting rational values for 
the argument x. For Abelian fields over an imaginary quadratic 
field the so-called complex multiplication of the elliptic and modular 
functions plays a similar role ("Kronecker's Jugendtraum"). While 
Heinrich Weber following in Kronecker's footsteps, and R. Fuëter 
under Hubert 's guidance, made this dream come true, Hubert himself 
began to play with modular functions of several variables which are 
defined by means of algebraic number fields, and to study their arith
metical implications. He never published these investigations, but 
O. Blumenthal, and later E. Hecke, used his notes and developed his 
ideas. The results are provocative, but still far from complete. I t is 
indicative of the fertility of Hubert 's mind at this most productive 
period of his life that he handed over to his pupils a complex of prob
lems of such fascination as that of the relation between number theory 
and modular functions.8 

There remain to be mentioned a particularly simple proof of the 
transcendence of e and ir with which Hubert opened the series of his 
arithmetical papers, and the 1909 paper settling Waring's century-old 
conjecture. I should classify the latter paper among his most original 
ones, but we can forego considering it more closely because a decade 
later Hardy and Littlewood found a different approach which yields 

8 R. Fuëter, Singular e Moduln und complexe Multiplication, 2 vols., Leipzig, 1924, 
1927; cf. also H. Hasse, J. Reine Angew. Math. vol. 157 (1927) pp. 115-139. 
O. Blumenthal, Math. Ann. vol. 56 (1903) pp. 509-548, vol. 58 (1904) pp. 497-527. 
E. Hecke, Math. Ann. vol. 71 (1912) pp. 1-37, vol. 74 (1913) pp. 465-510. 
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asymptotic formulas for the number of representations, and it is the 
Hardy-Littlewood "circle method " which has given rise in recent 
times to a considerable literature on this and related subjects.0 

AXIOMATICS 

There could not have been a more complete break than the one 
dividing Hubert's last paper on the theory of number fields from his 
classical book, Grundlagen der Geometrie, published in 1899. Its only 
forerunner is a note of the year 1895 on the straight line as the short
est way. But O. Blumenthal records that as early as 1891 Hubert, 
discussing a paper on the role of Desargues's and Pappus's theorems 
read by H. Wiener at a mathematical meeting, made a remark which 
contains the axiomatic standpoint in a nutshell: "It must be possible 
to replace in all geometric statements the words point, line, plane, by 
table, chair, rnug." 

The Greeks had conceived of geometry as a deductive science which 
proceeds by purely logical processes once the few axioms have been 
established. Both Euclid and Hubert carry out this program. How
ever, Euclid's list of axioms was still far from being complete; Hu
bert's list is complete and there are no gaps in the deductions. Euclid 
tried to give a descriptive definition of the basic spatial objects and 
relations with which the axioms deal ; Hubert abstains from such an 
attempt. All that we must know about those basic concepts is con
tained in the axioms. The axioms are, as it were, their implicit (neces
sarily incomplete) definitions. Euclid believed the axioms to be evi
dent; his concern is the real space of the physical universe. But in 
the deductive system of geometry the evidence, even the truth of the 
axioms, is irrelevant; they figure rather as hypotheses of which one 
sets out to develop the logical .consequences. Indeed there are many 
different material interpretations of the basic concepts for which the 
axioms become true. For instance, the axioms of w-dimensional 
Euclidean vector geometry hold if a distribution of direct current in a 
given electric circuit, the n branches of which connect in certain 
branching points, is called a vector, and Joule's heat produced per 
unit time by the current is considered the square of the vector's 
length. In building up geometry on the foundation of its axioms one 
will attempt to economize as much as possible and thus illuminate 
the role of the several groups of axioms. Arranged in their natural 

9 It must suffice here to quote the first paper in this line: G. H. Hardy and J. E. 
Littlewood, Quart. J. Math. vol. 48 (1919) pp. 272-293, and its latest successor which 
carries Waring's theorem over to arbitrary algebraic fields; C. L. Siegel, Amer. J. 
Math. vol. 66 (1944) pp. 122-136. 
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hierarchy they are the axioms of incidence, order, congruence, paral
lelism, and continuity. For instance, if the theory of geometric pro
portions or of the areas of polygons can be established without 
resorting to the axioms of continuity, this ought to be done. 

In all this, though the execution shows the hand of a master, Hu
bert is not unique. An outstanding figure among his predecessors is 
M. Pasch, who had indeed traveled a long way from Euclid when he 
brought to light the hidden axioms of order and with methodical 
clarity carried out the deductive program for projective geometry 
(1882). Others in Germany (F. Schur) and a flourishing school of 
Italian geometers (Peano, Veronese) had taken up the discussion. 
With respect to the economy of concepts, Hubert is more conserva
tive than the Italians: quite deliberately he clings to the Euclidean 
tradition with its three classes of undefined elements, points, lines, 
planes, and its relations of incidence, order and congruence of seg
ments and angles. This gives his book a peculiar charm, as if one 
looked into a face thoroughly familiar and yet sublimely transfigured. 

It is one thing to build up geometry on sure foundations, another to 
inquire into the logical structure of the edifice thus erected. If I am 
not mistaken, Hubert is the first who moves freely on this higher 
"metageometric" level: systematically he studies the mutual inde
pendence of his axioms and settles the question of independence from 
certain limited groups of axioms for some of the most fundamental 
geometric theorems. His method is the construction of models: the 
model is shown to disagree with one and to satisfy all other axioms; 
hence the one cannot be a consequence of the others. One outstanding 
example of this method had been known for a considerable time, the 
Cayley-Klein model of non-Euclidean geometry. For Veronese's non-
Archimedean geometry Levi-Ci vita (shortly before Hubert) had con
structed a satisfactory arithmetical model. The question of consistency 
is closely related to that of independence. The general ideas appear to 
us almost banal today, so thoroughgoing has been their influence upon 
our mathematical thinking. Hubert stated them in clear and unmis
takable language, and embodied them in a work that is like a crystal : 
an unbreakable whole with many facets. Its artistic qualities have 
undoubtedly contributed to its success as a masterpiece of science. 

In the construction of his models Hubert displays an amazing 
wealth of invention. The most interesting examples seem to me the 
one by which he shows that Desargues's theorem does not follow from 
the plane incidence axioms, but that the plane incidence axioms com
bined with Desargues's theorem enable one to embed the plane in a 
higher dimensional space in which all incidence axioms hold ; and then 
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the other example by which he decides whether the Archimedean 
axiom of continuity is necessary to restore the full congruence axioms 
after having curtailed them by the exclusion of reflections. 

What is the building material for the models? Klein's model of non-
Euclidean geometry could be interpreted as showing that he who 
accepts Euclidean geometry with its points and lines, and so on, can 
by mere change of nomenclature also get the non-Euclidean geome
try. Klein himself preferred another interpretation in terms of projec
tive space. However, Descartes's analytic geometry had long provided 
a more general and satisfactory answer, of which Riemann, Klein and 
many others must have been aware: All that we need for our con
struction is the field of real numbers. Hence any contradiction in 
Euclidean geometry must show up as a contradiction in the arith
metical axioms on which our operations with real numbers are based. 
Nobody had said that quite clearly before Hubert. He formulates a 
complete and simple set of axioms for real numbers. The system of 
arithmetical axioms will have its exchangeable parts just as the geo
metric system has. From a purely algebraic standpoint the most 
important axioms are those characterizing a (commutative or non-
commutative) field. Any such abstract number field may serve as 
a basis for the construction of corresponding geometries. Vice versa, 
one may introduce numbers and their operations in terms of a space 
satisfying certain axioms; Hubert's Desarguesian Streckenrechnung is 
a fine example. In general this reverse process is the more difficult 
one. The Chicago school under E. H. Moore took up Hilbert's in
vestigations, and in particular O. Veblen did much to reveal the per
fect correspondence between the projective spaces obeying a set of 
simple incidence axioms (and no axioms of order), and the abstractly 
defined number fields.10 

What the question of independence literally asks is to make sure 
that a certain proposition cannot be deduced from other propositions. 
It seems to require that we make the propositions, rather than the 
things of which they speak, the object of our investigation, and that 
as a preliminary we fully analyze the logical mechanism of deduction. 
The method of models is a wonderful trick to avoid that sort of logical 
investigations. It pays, however, a heavy price for thus shirking the 
fundamental issue: it merely reduces everything to the question of 
consistency for the arithmetical axioms, which is left unanswered. In 

10 Among later contributions to this question I mention W. Schwan, Strecken
rechnung una Gruppentheorie, Math. Zeit. vol. 3 (1919) pp. 11-28. A complete bibli
ography of geometric axiomatics since Hubert would probably cover many pages. 
I refrain from citing a list of names. 
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the same manner completeness, which literally means that every gen
eral proposition about the objects with which the axioms deal can 
be decided by inference from the axioms, is replaced by categoricity 
(Veblen), which asserts that any imaginable model is isomorphic to 
the one model by which consistency is established. In this sense 
Hubert proves that there is but "one," the Cartesian geometry, which 
fulfills all his axioms. Only in the case of G. Fano's and O. Veblen's 
finite projective spaces, for example, of the projective plane consisting 
of seven points, the model is a purely combinatorial scheme, and the 
questions of consistency, independence and completeness can be an
swered in the absolute sense. Hubert never seems to have thought of 
illustrating his conception of the axiomatic method by purely com
binatorial schemes, and yet they provide by far the simplest examples. 

An approach to the foundations of geometry entirely different from 
the one followed in his book is pursued by Hubert in a paper which is 
one of the earliest documents of set-theoretic topology. From the 
standpoint of mechanics the central task which geometry ought to 
perform is that of describing the mobility of a solid. This was the 
viewpoint of Helmholtz, who succeeded in characterizing the group 
of motions in Euclidean space by a few simple axioms. The question 
had been taken up by Sophus Lie in the light of his general theory 
of continuous groups. Lie's theory depends on certain assumptions of 
differentiability; to get rid of them is one of Hubert 's Paris Problems. 
In the paper just mentioned he does get rid of them as far as Helm-
holtz's problem in the plane is concerned. The proof is difficult and 
laborious; naturally continuity is now the foundation—and not the 
keystone of the building as it had been in his Grundlagen book. Other 
authors, R. L. Moore, N. J. Lennes, W. Süss, B. v. Kérékjarto, car
ried the problem further along these topological lines. A half-personal 
reminiscence may be of interest. Hubert defines a two-dimensional 
manifold by means of neighborhoods, and requires that a class of 
"admissible" one-to-one mappings of a neighborhood upon Jordan 
domains in an x, ^-plane be designated, any two of which are con
nected by continuous transformations. When I gave a course on 
Riemann surfaces at Göttingen in 1912, I consulted Hubert 's paper 
and noticed that the neighborhoods themselves could be used to char
acterize that class. The ensuing definition was given its final touch 
by F. Hausdorff; the Hausdorff axioms have become a byword in 
topology.11 (However, when it comes to explaining what a differentia 

11 A parallel development, with E. H. Moore as the chief prompter, must have 
taken place in this country. As I have to write from memory mainly, it is inevitable 
that my account should be colored by the local Göttingen tradition. 
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able manifold is, we are to this day bound to Hubert's roundabout 
way; cf. Veblen and Whitehead, The foundations of differential geome
try, Cambridge, 1932.) 

The fundamental issue of an absolute proof of consistency for the 
axioms which should include the whole of mathematical analysis, 
nay even Cantor's set theory in its wildest generality, remained in 
Hubert's mind, as a paper read before the International Congress at 
Heidelberg in 1904 testifies. It shows him on the way, but still far 
from the goal. Then came the time when integral equations and later 
physics became his all-absorbing interest. One hears a loud rumbling 
of the old problem in his Zurich address, Axiomatisches Denken, of 
1917. Meanwhile the difficulties concerning the foundations of math
ematics had reached a critical stage, and the situation cried for repair. 
Under the impact of undeniable antinomies in set theory, Dedekind 
and Frege had revoked their own work on the nature of numbers and 
arithmetical propositions, Bertrand Russell had pointed out the 
hierarchy of types which, unless one decides to "reduce" them by 
sheer force, undermine the arithmetical theory of the continuum; 
and finally L. E. J. Brouwer by his intuitionism had opened our eyes 
and made us see how far generally accepted mathematics goes beyond 
such statements as can claim real meaning and truth founded on evi
dence. I regret that in his opposition to Brouwer, Hubert never 
openly acknowledged the profound debt which he, as well as all other 
mathematicians, owe Brouwer for this revelation. 

Hubert was not willing to make the heavy sacrifices which 
Brouwer's standpoint demanded, and he saw, at least in outline, a 
way by which the cruel mutilation could be avoided. At the same time 
he was alarmed by signs of wavering loyalty within the ranks of 
mathematicians some of whom openly sided with Brouwer. My own 
article on the Grundlagenkrise in Math. Zeit. vol. 10 (1921), written 
in the excitement of the first postwar years in Europe, is indicative 
of the mood. Thus Hubert returns to the problem of foundations in 
earnest. He is convinced that complete certainty can be restored 
without "committing treason to our science." There is anger and de
termination in his voice when he proposes "die Grundlagenfragen 
einfürallemal aus der Welt zu schaffen." "Forbidding a mathemati
cian to make use of the principle of excluded middle," says he, "is 
like forbidding an astronomer his telescope or a boxer the use of his 
fists." 

Hubert realized that the mathematical statements themselves 
could not be made the subject of a mathematical investigation whose 
aim is to answer the question of their consistency in its primitive 
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sense, lest they be first reduced to mere formulas. Algebraic formulas 
like a+b = b+a are the most familiar examples. The process of deduc
tion by which formulas previously obtained give rise to new formulas 
must be described without reference to any meaning of the formulas. 
The deduction starts from certain initial formulas, the axioms, which 
must be written out explicitly. Whereas in his Grundlagen der Geome
trie the meaning of the geometric terms had become irrelevant, but 
the meaning of logical terms, as "and," "not," "if then," had still to 
be understood, now every trace of meaning is obliterated. As a conse
quence, logical symbols like —» in a—>b, read : a implies b, enter into 
the formulas. Hilbert fully agrees with Brouwer in that the great 
majority of mathematical propositions are not "real" ones conveying 
a definite meaning verifiable in the light of evidence. But he insists 
that the non-real, the "ideal propositions" are indispensable in order 
to give our mathematical system "completeness." Thus he parries 
Brouwer, who had asked us to give up what is meaningless, by re
linquishing the pretension of meaning altogether, and what he tries 
to establish is not truth of the individual mathematical proposition, 
but consistency of the system. The game of deduction when played 
according to rules, he maintains, will never lead to the formula 05^0. 
In this sense, and in this sense only, he promises to salvage our cher
ished classical mathematics in its entirety. 

For those who accuse him of degrading mathematics to a mere 
game he points first to the introduction of ideal elements for the sake 
of completeness as a common method in all mathematics—for ex
ample, of the ideal points outside an accessible portion of space, with
out which space would be incomplete—; secondly, to the neighboring 
science of physics where likewise not the individual statement is veri
fiable by experiment, but in principle only the system as a whole can 
be confronted with experience. 

But how to make sure that the "game of deduction" never leads to 
a contradiction? Shall we prove this by the same mathematical 
method the validity of which stands in question, namely by deduction 
from axioms? This would clearly involve a regress ad infinitum. It 
must have been hard on Hilbert, the axiomatist, to acknowledge that 
the insight of consistency is rather to be attained by intuitive reason
ing which is based on evidence and not on axioms. But after all, 
it is not surprising that ultimately the mind's seeing eye must come 
in. Already in communicating the rules of the game we must count 
on understanding. The game is played in silence, but the rules must 
be told and any reasoning about it, in particular about its consistency, 
communicated by words. Incidentally, in describing the indispensable 
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intuitive basis for his Beweistheorie Hubert shows himself an accom
plished master of that, alas, so ambiguous medium of communication, 
language. With regard to what he accepts as evident in this "meta-
mathematicial" reasoning, Hubert is more papal than the pope, more 
exacting than either Kronecker or Brouwer. But it cannot be helped 
that our reasoning in following a hypothetic sequence of formulas 
leading up to the formula 0 5̂ 0 is carried on in hypothetic generality 
and uses that type of evidence which a formalist would be tempted 
to brand as application of the principle of complete induction. Ele
mentary arithmetics can be founded on such intuitive reasoning as 
Hilbert himself describes, but we need the formal apparatus of varia
bles and "quantifiers" to invest the infinite with the all important 
part that it plays in higher mathematics. Hence Hilbert prefers to 
make a clear cut: he becomes strict formalist in mathematics, strict 
intuitionist in metamathematics. 

It is perhaps possible to indicate briefly how Hubert's formalism 
restores the principle of the excluded middle which was the main target 
of Brouwer's criticism. Consider the infinite sequence of numbers 
0,1, 2, • • •. Any property A of numbers (for example, "being prime") 
may be represented by a propositional function A{x) ("x is prime"), 
from which a definite proposition A (b) arises by substituting a con
crete number b for the variable x ("6 is prime"). Accepting the prin
ciple which Brouwer denies and to which Hilbert wishes to hold on, 
that (i) either there exists a number x for which A{x) holds, or (ii) 
A(x) holds for no x, we can find a "representative" r for the property 
Ay a number such that A(b) implies A(r) whatever the number b, 
A(b)-^>A(r). Indeed, in the alternative (i) we choose r as one of the 
numbers x for which A (x) holds, in the alternative (ii) at random. 
Thus Aristides is the representative of honesty; for, as the Athenians 
said, if there is any honest man it is Aristides. Assuming that we 
know the representative we can decide the question whether there is 
an honest man or whether all are dishonest by merely looking at him : 
if he is dishonest everybody is. In the realm of numbers we may even 
make the choice of the representative unique, in case (i) choosing 
# = r as the least number for which A (x) holds, and r = 0 in the op
posite case (ii). Then r arises from A by a certain operator pxt 

r = pxA(x), applicable to every imaginable property «4. A proposi
tional function may contain other variables y, z, • • • besides x. 
Therefore it is necessary to attach an index x to p, just as in integrat
ing one must indicate with respect to which variable one integrates. 
px eliminates the variable x; for instance p»A{x, y) is a function of y 
alone. The word quantifier is in use for this sort of operator. Hence 
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we write our axiom as follows: 

(8) A(J>)-+A(j>A{x)). 

It is immaterial whether we fix the representative in the unique man
ner described above ; our specific rule would not fit anyhow unless x 
ranges over the numbers 0, 1, 2, • • • . Instead we imagine a quantifier 
px of universal applicability which, as it were, selects the representa
tive for us. Zermelo's axiom of choice is thus woven into the principle 
of the excluded middle. It is a bold step; but the bolder the better, 
as long as it can be shown that we keep within the bounds of con
sistency! 

In the formalism, propositional functions are replaced by formulas 
the handling of which must be described without reference to their 
meaning. In general, variables x} y, - • • will occur among the sym
bols of a formula 21. We say that the symbol p* binds the variable x 
in the formula 21 which follows the symbol12 and that x occurs free 
in a formula wherever it is not bound by a quantifier with index x. 
*i y y —*> Px are symbols entering into the formulas; the German letters 
are no such symbols, but are used for communication. It is more natu
ral to describe our critical axiom (8) as a rule for the formation of 
axioms. It says: take any formula 2Ï in which only the variable x oc
curs free, and any formula b without free variables, and by means of 
them build the formula 

(9) 21(b) -» 2t(p*2t). 

Here 2ï(b) stands for the formula derived from 21 by putting in the 
entire formula b for the variable x wherever x occurs free. 

In this way formulas may be obtained as axioms according to cer
tain rules. Deduction proceeds by the rule of syllogism: From two 
formulas a and a—>h previously obtained, in the second of which the 
first formula reappears at the left of the symbol —», one obtains the 
formula b. 

How does Hubert propose to show that the game of deduction will 
never lead to the formula 0 7*0 ? Here is the basic idea of his procedure. 
As long as one deals with "finite" formulas only, formulas from which 
the quantifiers px, py} • • • are absent, one can decide whether they 
are true or false by merely looking at them. With the entrance of p 
such a descriptive valuation of formulas becomes impossible : evidence 
ceases to work. But a concretely given deduction is a sequence of 

12 If we wish the rule that px binds x in all that comes after to be taken literally, 
we must write a->b in the form—• {{}. The formulas will then look like genealogical 
trees. 
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formulas in which only a limited number of instances of the axiomatic 
rule (9) will turn up. Let us assume that the only quantifier which 
occurs is p* and wherever it occurs it is followed by the same finite 
formula 21, so that the instances of (9) are of the form 

(10) 21(60 -» 2t(P*2I), • • • , 21(6.) -» 2t(PJl). 

Assume, moreover, bi, • • • , bh to be finite. We then carry out a re
duction, replacing p «21 by a certain finite r wherever it occurs as part 
of a formula in our sequence. In particular, the formulas (10) will 
change into 

(ii) a(bo-*a(r),---,a(W->a(r). 
We now see how to choose r: if by examining the finite formulas 
2t(bi), • • • , 2t(b*) one after the other, we find one that is true, say 
21(1)3), then we take 63 for r. If every one of them turns out to be 
false, we choose r at random. Then the h reduced formulas (11) are 
"true" and our hypothesis that the deduction leads to the false for
mula 0 T^O is carried ad absurdum. The salient point is that a con
cretely given deduction makes use of a limited number of explicitly 
exhibited individuals bi, • • • , bh only. If we make a wrong choice, 
for example, by choosing Alcibiades rather than Aristides as the rep
resentative of incorruptibility, our mistake will do no harm as long 
as the few people (out of the infinite Athenian crowd) with whom we 
actually deal are all corruptible. 

A slightly more complicated case arises when we permit the 
61, • • • , bh to contain px, but always followed by the same 21. Then 
we first make a tentative reduction replacing p*2l by the number 0, 
say. The formulas bi, • • • , bh are thus changed into reduced finite 
formulas b?, • • • , b°h and (10) into 

2Kb0!) -> 21(0), • - . , 2Kb') -»2t(0). 

This reduction will do unless 21(0) is false and at the same time one 
of the 2l(bî), • • • , 2I(b2), say 2I(b£), is true. But then we have in fig 
a perfectly legitimate representative of 2Ï, and a second reduction 
which replaces pa.21 by bg will work out all right. 

However, this is only a modest beginning of the complications 
awaiting us. Quantifiers px, p„, • • • with different variables and ap
plied to different formulas will be piled one upon the other. We make 
a tentative reduction ; it will go wrong in certain places and from that 
failure we learn how to correct it. But the corrected reduction will 
probably go wrong at other places. We seem to be driven around in a 
vicious circle, and the problem is to direct our consecutive corrections 
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in such a manner as to obtain assurance that finally a reduction will 
result that makes good at all places in our given sequence of formulas. 
Nothing has contributed more to revealing the circle-like character 
of the usual transfinite arguments of mathematics than these at
tempts to make sure of consistency in spite of all circles. 

The symbolism for the formalization of mathematics as well as the 
general layout and first steps of the proof of consistency are due to 
Hubert himself. The program was further advanced by younger col
laborators, P. Bernays, W. Ackermann, J. von Neumann. The last 
two proved the consistency of "arithmetics, " of that part in which the 
dangerous axiom about the conversion of predicates into sets is not 
yet admitted. A gap remained which seemed harmless at the time, 
but already detailed plans were drawn up for the invasion of analysis. 
Then came a catastrophe: assuming that consistency is established, 
K. Gödel showed how to construct arithmetical propositions which 
are evidently true and yet not deducible within the formalism. His 
method applies to Hubert's as well as any other not too limited for
malism. Of the two fields, the field of formulas obtainable in Hubert's 
formalism and the field of real propositions that are evidently true, 
neither contains the other (provided consistency of the formalism can 
be made evident). Obviously completeness of a formalism in the ab
solute sense in which Hubert had envisaged it was now out of the 
question. When G. Gentzen later closed the gap in the consistency 
proof for arithmetics, which Göbel's discovery had revealed to be 
serious indeed, he succeeded in doing so only by substantially lower
ing Hubert's standard of evidence.18 The boundary line of what is 
intuitively trustworthy once more became vague. As all hands were 
needed to defend the homeland of arithmetics, the invasion of analy
sis never came off, to say nothing of general set theory. 

This is where the problem now stands; no final solution is in sight. 
But whatever the future may bring, there is no doubt that Brouwer 
and Hubert raised the problem of the foundations of mathematics to a 
new level. A return to the standpoint of Russell-Whitehead's Prin-
cipia Mathematica is unthinkable. 

Hubert is the champion of axiomatics. The axiomatic attitude 
seemed to him one of universal significance, not only for mathematics, 
but for all sciences. His investigations in the field of physics are con
ceived in the axiomatic spirit. In his lectures he liked to illustrate the 
method by examples taken from biology, economics, and so on. The 
modern epistemological interpretation of science has been profoundly 
influenced by him. Sometimes when he praised the axiomatic method 

18 G. Gentzen, Math. Ann. vol. 112 (1936) pp. 493-565. 
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he seemed to imply that it was destined to obliterate completely the 
constructive or genetic method. I am certain that, at least in later 
life, this was not his true opinion. For whereas he deals with the 
primary mathematical objects by means of the axioms of his symbolic 
system, the formulas are constructed in the most explicit and finite 
manner. In recent times the axiomatic method has spread from the 
roots to all branches of the mathematical tree. Algebra, for one, is 
permeated from top to bottom by the axiomatic spirit. One may de
scribe the role of axioms here as the subservient one of fixing the 
range of variables entering into the explicit constructions. But it 
would not be too difficult to retouch the picture so as to make the 
axioms appear as the masters. An impartial attitude will do justice 
to both sides; not a little of the attractiveness of modern mathemati
cal research is due to a happy blending of axiomatic and genetic pro
cedures. 

INTEGRAL EQUATIONS 

Between the two periods during which Hubert's efforts were con
centrated on the foundations, first of geometry, then of mathematics 
in general, there lie twenty long years devoted to analysis and physics. 

In the winter of 1900-1901 the Swedish mathematician E. Holm
gren reported in Hubert's seminar on Fredholm's first publications 
on integral equations, and it seems that Hubert caught fire at once. 
The subject has a long and tortuous history, beginning with Daniel 
Bernoulli. The mathematicians' efforts to solve the (mechanical, 
acoustical, optical, electromagnetical) problem of the oscillations of 
a continuum and the related boundary value problems of potential 
theory span a period of two centuries. Fourier's Théorie analytique 
de la chaleur (1822) is a landmark. H. A. Schwarz proved for the first 
time (1885) the existence of a proper oscillation in two and more 
dimensions by constructing the fundamental frequency of a mem
brane. The last decade of the nineteenth century saw Poincaré on 
his way to the development of powerful function-theoretic methods; 
C. Neumann and he came to grips with the harmonic boundary prob
lem ; Volterra studied that type of integral equations which now bears 
his name, and for linear equations with infinitely many unknowns 
Helge von Koch developed the infinite determinants. Most scientific 
discoveries are made when "their time is fulfilled"; sometimes, but 
seldom, a genius lifts the veil decades earlier than could have been 
expected. Fredholm's discovery has always seemed to me one that 
was long overdue when it came. What could be more natural than the 
idea that a set of linear equations connected with a discrete set of 
mass points gives way to an integral equation when one passes to 
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the limit of a continuum? But the fact that in the simpler cases a 
differential rather than an integral equation results in the limit riv
eted the mathematicians* attention for two hundred years on differ
ential equations! 

It must be said, however, that the simplicity of Fredholm's results 
is due to the particular form of his equation, on which it was hard to 
hit without the guidance of the problems of mathematical physics to 
which he applied i t : 

x(s) - f K(s, t)x(t)dt = f(s) (0 ^ s^ 1). 

Indeed the linear operator which in the left member operates on the 
unknown function x producing a given/, (E — K)x~f, consists of two 
parts, the identity E and the integral operator K, which in a certain 
sense is weak compared to E. Fredholm proved that for this type of 
integral equation the two main facts about n linear equations with 
the same number n of unknowns hold: (1) The homogeneous equation 
[ /(s)=0] has a finite number of linearly independent solutions 

x(s)=<t>i(s), • • • , <l>h(s)t and the homogeneous equation with the 
transposed kernel K'(s, t)=K(ty s) has the same number of solu
tions, ^i(s), • • • , *ph(s). (2) The nonhomogeneous equation is solv
able if and only if the given ƒ satisfies the h linear conditions 

f f(s)Us)ds = 0 (i « 1, . . . , A). 
J o 

Following an artifice used by Poincaré, Fredholm introduces a param
eter X replacing K by \K and obtains a solution in the form familiar 
from finite linear equations, namely as a quotient of two determinants 
of H. v. Koch's type, either of which is an entire function of the 
parameter X. 

Hubert saw two things: (1) after having constructed Green's func
tion K for a given region G and for the potential equation Au = 0 by 
means of a Fredholm equation on the boundary, the differential equa
tion of the oscillating membrane A0+X<£ = O changes into a homo
geneous integral equation 

(t>(s) - X f K(s, t)4>(t)dt = 0 

with the symmetric kernel K, K(t, s) =K(s, t) (in which the parameter 
X is no longer artificial but of the very essence of the problem); 
(2) the problem of ascertaining the "eigen values" X and "eigen func-
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tions" <t>(s) of this integral equation is the analogue for integrals of 
the transformation of a quadratic form of n variables onto principal 
axes. Hence the corresponding theorem for the quadratic integral 
form 

ƒ ' ƒ ' • 
•/ o •/ o 

(12) I I K{s,t)x{s)x{t)dsdt 
J o J o 

with an arbitrary symmetric kernel K must provide the general founda
tion for the theory of oscillations of a continuous medium. If others 
saw the same, Hubert saw it at least that much more clearly that he 
bent all his energy on proving that proposition, and he succeeded by 
the same direct method which about 1730 Bernoulli had applied to 
the oscillations of a string: passage to the limit from the algebraic 
problem. In carrying out the limiting process he had to make use of 
the Koch-Fredholm determinant. He finds that there is a sequence 
of eigen values Xi, X2, • • • tending to infinity, Xw—»<*> for n—»<», and 
an orthonormal set of corresponding eigen functions 4>n(s), 

<t>n(s) - \ n f K(S, t)(j>n(t)dt = 0, 

/
(t>m(s)<t>n(s)ds = 8mn, 

0 
such that 

f f K(s, t)x(s)x(t)dsdt = X) €»A». 
Jo J o 

£n being the Fourier coefficient f0x(s)<l>n(s)ds. The theory implies that 
every function of the form 

y(s) = f K(s,t)x 
• /o 

{t)dt 

may be expanded into a uniformly convergent Fourier series in terms 
of the eigen functions </>n, 

Vis) = 2j1?n*n(s) , rjn = I ^(( 

Jo 
S)<t>n(s)ds. 

Huber t s passage to the limit is laborious. Soon afterwards 
E. Schmidt in a Göttingen thesis found a simpler and more construc
tive proof for these results by adapting H. A. Schwarz's method in
vented twenty years before to the needs of integral equations. 

From finite forms the road leads either to integrals or to infinite 
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series. Therefore Hubert considered the same problem of orthogonal 
transformation of a given quadratic form 

into a form of the special type 

(14) KiÉÎ + K2É2 + • ' • (*» = 1/K ~+ 0) 

also for infinitely many (real) variables (xi, #2, • • • ) or vectors x in a 
space of a denumerable infinity of dimensions. Only such vectors are 
admitted as have a finite length | # | , 

| x | = xi + x2 + • • • ; 

they constitute what we now call the Hubert space. The advantage 
of Hubert space over the "space" of all continuous functions x(s) lies 
in a certain property of completeness, and due to this property one 
can establish "complete continuity" as the necessary and sufficient 
condition for the transformability of a given quadratic form K> (13), 
into (14), by following an argument well known in the algebraic case: 
one determines ici, K2, • * • as the consecutive maxima of K on the 
"sphere" | * | 2 = 1 . 

As suggested by the theorem concerning a quadratic integral form, 
the link between the space of functions x(s) and the Hubert space of 
vectors (xi, #2, • • • ) is provided by an arbitrary complete orthonormal 
system Ui(s), mis), • • • and expressed by the equations 

Xn~\ X(s)un(s)ds. 
J0 

Bessel's inequality states that the square sum of the Fourier coeffi
cients xn is less than or equal to the square integral of x(s). The rela
tion of completeness, first introduced by A. Hurwitz and studied in 
detail by W. Steklofï, requires that in this inequality the equality sign 
prevail. Thus the theorem on quadratic forms of infinitely many 
variables at once gives the corresponding results about the eigen val
ues and eigen functions of symmetric kernels K(s, t)—or would do 
so if one could count on the uniform convergence of ^xnun(s) for 
any given vector (xi, #2, • * • ) in Hubert space. In the special case 
of an eigen vector of that quadratic form (13) which corresponds to 
the integral form (12), 

Xn ==: A / j J\.nmXm} 

m 
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Hubert settles this point by forming the uniformly convergent series 

I K(s, t)um(t)dt 
m "O 

which indeed yields a continuous function #(s) with the nth. Fourier 
coefficient 

and thus obtains the eigen function of K(s, t) for the eigen value X. 
Soon afterwards, under the stimulus of Hubert 's investigations. 
E. Fischer and F. Riesz proved their well known theorem that the 
space of all functions x{s) the square of which has a finite Lebesgue 
integral enjoys the same property of completeness as Hubert space, 
and hence one is mapped isomorphically upon the other in a one-to-
one fashion by means of a complete orthonormal system un(s). I 
mention these details because the historic order of events may have 
fallen into oblivion with many of our younger mathematicians, for 
whom Hubert space has assumed that abstract connotation which 
no longer distinguishes between the two realizations, the square 
integrable functions x(s) and the square summable sequences 
(#1, #2, • • • ). I think Hubert was wise to keep within the bounds 
of continuous functions when there was no actual need for intro
ducing Lebesgue's general concepts. 

Perhaps Hubert 's greatest accomplishment in the field of integral 
equations is his extension of the theory of spectral decomposition from 
the completely continuous to the so-called bounded quadratic forms. 
He finds that then the point spectrum will in general have condensa
tion points and a continuous spectrum will appear beside the point 
spectrum. Again he proceeds by directly carrying out the transition 
to the limit, letting the number of variables xi, #2, • • • increase ad 
infinitum. Again, not long afterwards, simpler proofs for his results 
were found. 

While thus advancing the boundaries of the general theory, he did 
not lose sight of the ordinary and partial differential equations from 
which it had sprung. Simultaneously with the young Italian mathe
matician Eugenio Elia Levi he developed the parametrix method as a 
bridge between differential and integral equations. For a given elliptic 
differential operator A* of the second order, the parametrix K(s, t) 
is a sort of qualitative approximation of Green's function, depending 
like the latter on an argument point 5 and a parameter point /. It is 
supposed to possess the right kind of singularity for s = t so that the 
nonhomogeneous equation A*u =ƒ for 
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u = Kp, u(s) *= f K(s, t)p(f)dt 

gives rise to the integral equation p+Lp—f for the density p, with a 
kernel L(s, t) ~A?K(s, t) regular enough at s = / for Fredholm's theory 
to be applicable. It is important to give up the assumption that K 
satisfies the equation A*i£" = 0, because in general a fundamental solu
tion will not be known for the given differential operator A*. In order 
not to be bothered by boundary conditions, Hubert assumes the 
domain of integration to be a compact manifold, like the surface of a 
sphere, and finds that the method works if the parametrix, besides 
having the right kind of singularity, is symmetric with respect to 
argument and parameter. 

What has been said should be enough to make clear that in the 
terrain of analysis a rich vein of gold had been struck, comparatively 
easy to exploit and not soon to be exhausted. The linear equations of 
infinitely many unknowns had to be investigated further (E. Schmidt, 
F. Riesz, O. Toeplitz, E. Hellinger, and others) ; the continuous spec
trum and its appearance in integral equations with "singular " kernels 
awaited closer analysis (E. Hellinger, T. Carleman) ; ordinary differ
ential equations, with regular or singular boundaries, of second or of 
higher order, received their due share of attention (A. Kneser, 
E. Hilb, G. D. Birkhoff, M. Bôcher, J. D. Tamarkin, and many 
others).14 It became possible to develop such asymptotic laws for the 
distribution of eigen values as were required by the thermodynamics 
of radiation (H. Weyl, R. Courant). Expansions in terms of orthogo
nal functions were studied independently of their origin in differential 
or integral equations. New light fell upon Stieltjes's continued frac
tions and the problem of momentum. The most ambitious began to 
attack nonlinear integral equations. A large international school of 
young mathematicians gathered around Hubert and integral equa
tions became the fashion of the day, not only in Germany, but also 
in France where great masters like E. Picard and Goursat paid their 
tributes, in Italy and on this side of the Atlantic. Many good papers 
were written, and many mediocre ones. But the total effect was an 
appreciable change in the aspect of analysis. 

Remarkable are the applications of integral equations outside the 
field for which they were invented. Among them I mention the fol
lowing three: (1) Riemann's problem of determining n analytic func-

14 For later literature and systems of differential equations see Axel Schur, Math. 
Ann. vol. 82 (1921) pp. 213-239; G. A. Bliss, Trans. Amer. Math. Soc. vol. 28 (1926) 
pp. 561-584; W. T. Reid, ibid. vol. 44 (1938) pp. 508-521. 
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tions fi(z), • • • , fn(z)t regular except at a finite number of points, 
which by analytic continuation around these points suffer preassigned 
linear transformations. The problem was solved by Hubert himself, 
and subsequently in a simpler and more complete form by J. Piemelj. 
(A very special case of it is the existence of algebraic functions on a 
Riemann surface if that surface is given as a covering surface of the 
complex z-plane.) Investigations by G. D. Birkhoff on matrices of 
analytic functions lie in the same line. (2) Proof for the completeness 
of the irreducible representations of a compact continuous group. 
This is an indispensable tool for the approach to the general theory of 
invariants by means of Adolf Hurwitz's integration method, and with 
its refinements and generalizations plays an important role in modern 
group-theoretic research, including H. Bohr's theory of almost peri
odic functions.16 Contact is thus made with Hubert's old friend, the 
theory of invariants. (3) Quite recently Hubert's parametrix method 
has served to establish the central existence theorem in W. V. D. 
Hodge's theory of harmonic integrals in compact Riemannian spacer16 

The story would be dramatic enough had it ended here. But then a 
sort of miracle happened : the spectrum theory in Hubert space was 
discovered to be the adequate mathematical instrument of the new 
quantum physics inaugurated by Heisenberg and Schrödinger in 
1923. This latter impulse led to a reexamination of the entire complex 
of problems with refined means (J. von Neumann, A. Wintner, M. H. 
Stone, K. Friedrichs). As J. von Neumann was Hubert's collaborator 
toward the close of that epoch when his interest was divided between 
quantum physics and foundations, the historic continuity with Hu
bert's own scientific activities is unbroken, even for this later phase. 
What has become of the theory of abstract spaces and their linear 
operators in our times lies beyond the bounds of this report. 

A picture of Hubert's "analytic" period would be incomplete with
out mentioning a second motif, calculus of variations, which crossed 
the dominating one of integral equations. The "theorem of independ
ence " with which he concludes his Paris survey of mathematical prob
lems (1900) is an important contribution to the formal apparatus of 
that calculus. But of much greater consequence was his audacious 
direct assault on the functional maxima and minima problems. The 
whole finely wrought machinery of the calculus of variations is here 

18 H. Weyl and F. Peter, Math. Ann. vol. 97 (1927) pp. 737-755. A. Haar, Ann. of 
Math. vol. 34 (1933) pp. 147-169. J.von Neumann, Trans.Amer.Math.Soc. vol.36 
(1934) pp. 445-492. Cf. also L. Pontrjagin, Topological groups, Princeton, 1939. 

16 W. V. D. Hodge, The theory and applications of harmonic integrals, Cambridge, 
1941. H. Weyl, Ann. of Math. vol. 44 (1943) pp. 1-6. 
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consciously set aside. He proposes instead to construct the minimizing 
function as the limit of a sequence of functions for which the value 
of the integral under investigation tends to its minimum value. The 
classical example is Dirichlet's integral in a two-dimensional region G, 

DM-HA(TJ+0'}d',y-
Admitted are all functions u with continuous derivatives which have 
given boundary values, d being the lower limit of D [u] for admissible 
u, one can ascertain a sequence of admissible functions un such that 
D [un\—>d with w—»oo. One cannot expect the un themselves to con
verge; rather they have to be prepared for convergence by the 
smoothing process of integration. As the limit function will be har
monic and the value of the harmonic function at any point P equals 
its mean value over any circle K around P , it seems best to replace 
un(P) by its mean value in Ky with the expectation that this mean 
value will converge toward a number u(P) which is independent of 
the circle and in its dependence on P solves the minimum problem. 
Besides integration Hubert uses the process of sifting a suitable sub
sequence from the un before passing to the limit. Owing to the simple 
inequality 

{D[um - un]}lf* ^ {D[um] - d)w + {D[um] - d)w 

discovered by S. Zaremba this second step is unnecessary. 
Hubert's method is even better suited for problems in which the 

boundary does not figure so prominently as in the boundary value 
problems. By a slight modification one is able to include point singu
larities, and Hubert thus solved the fundamental problem for flows 
on Riemann surfaces, providing thereby the necessary foundation for 
Riemann's own approach to the theory of Abelian integrals, and he 
further showed that Poincaré's and Koebe's fundamental theorems 
on uniformization could be established in the same way. We should 
be much better off in number theory if methods were known which 
are as powerful for the construction of relative Abelian and Galois 
fields over given algebraic number fields as the Riemann-Hilbert 
transcendental method proves to be for the analogous problems in 
the fields of algebraic functions! Its wide application in the theory of 
conformai mapping and of minimal surfaces is revealed by the work 
of the man who was Hubert 's closest collaborator in the direction of 
mathematical affairs at Göttingen for many years, Richard Courant.17 

A book by Courant on the Dirichlet principle is in preparation. 
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Of a more indirect character, but of considerable vigor, is the influence 
of Hubert 's ideas upon the whole trend of the modern development 
of the calculus of variations; in Europe Carathéodory, Lebesgue, 
Tonelli could be mentioned among others, in this country the chain 
reaches from O. Bolza's early to M. Morse's most recent work. 

PHYSICS 

Already before Minkowski's death in 1909, Hubert had begun a 
systematic study of theoretical physics, in close collaboration with 
his friend who had always kept in touch with the neighboring science. 
Minkowski's work on relativity theory was the first fruit of these 
joint studies. Hubert continued them through the years, and between 
1910 and 1930 often lectured and conducted seminars on topics of 
physics. He greatly enjoyed this widening of his horizon and his con
tact with physicists, whom he could meet on their own ground. The 
harvest however can hardly be compared with his achievements in 
pure mathematics. The maze of experimental facts which the physi
cist has to take into account is too manifold, their expansion too fast, 
and their aspect and relative weight too changeable for the axiomatic 
method to find a firm enough foothold, except in the thoroughly con
solidated parts of our physical knowledge. Men like Einstein or Niels 
Bohr grope their way in the dark toward their conceptions of general 
relativity or atomic structure by another type of experience and 
imagination than those of the mathematician, although no doubt 
mathematics is an essential ingredient. Thus Hubert's vast plans in 
physics never matured. 

But his application of integral equations to kinetic gas theory and 
to the elementary theory of radiation were notable contributions. In 
particular, his asymptotic solution of Maxwell-Boltzmann's funda
mental equation in kinetic gas theory, which is an integral equation 
of the second order, clearly separated the two layers of phenomenolog-
ical physical laws to which the theory leads; it has been carried out 
in more detail by the physicists and applied to several concrete prob
lems. In his investigations on general relativity Hilbert combined 
Einstein's theory of gravitation with G. Mie's program of pure field 
physics. For the development of the theory of general relativity at 
that stage, Einstein's more sober procedure, which did not couple the 
theory with Mie's highly speculative program, proved the more fer
tile. Hubert 's endeavors must be looked upon as a forerunner of a 
unified field theory of gravitation and electromagnetism. However, 
there was still much too much arbitrariness involved in Hubert's 
Hamiltonian function; subsequent attempts (by Weyl, Eddington, 
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Einstein himself* and others) aimed to reduce it. Hopes in the Hubert 
circle ran high at that time; the dream of a universal law accounting 
both for the structure of the cosmos as a whole, and of all the atomic 
nuclei, seemed near fulfillment. But the problem of a unified field 
theory stands to this day as an unsolved problem; it is almost certain 
that a satisfactory solution will have to include the material waves 
(the Schrödinger-Dirac \p for the electron, and similar field quantities 
for the other nuclear particles) besides gravitation and electromagnet-
ism, and that its mathematical frame will not be a simple enlargement 
of that of Einstein's now classical theory of gravitation. 

Hubert was not only a great scholar, but also a great teacher. Wit
nesses are his many pupils and assistants, whom he taught the handi
craft of mathematical research by letting them share in his own work 
and its overflow, and then his lectures, the notes of many of which 
have found their way from Göttingen into public and private mathe
matical libraries. They covered an extremely wide range. The book 
he published with S. Cohn-Vossen on Anschauliche Geometrie is an 
outgrowth of his teaching activities. Going over the impressive list 
attached to his Collected Papers (vol. 3, p. 430) one is struck by the 
considerable number of courses on general topics like "Knowledge 
and Thinking," "On the Infinite," "Nature and Mathematics." His 
speech was fairly fluent, not as hesitant as Minkowski's, and far from 
monotonous. He had no difficulty in finding the pregnant words, and 
liked to emphasize short pivotal phrases by repeating them several 
times. On the whole, his lectures were a faithful reflection of his spirit; 
direct, intense; how could they fail to be inspiring? 


