TWO PROPERTIES OF THE FUNCTION $\cos x$

HERBERT E. ROBBINS

The function $f(x) = A \cos n(x + B)$, where A, B are any real constants and n is an integer, has the properties:

(I) $f(x)$ is real valued for all real x, of period 2π, and continuous.

(II) $f(x)$ is differentiable, and there exist constants a, b such that, for all x,
$$f'(x) = af(x + b).$$

(III) Given any constants a, a', b, b', there exist constants c, d such that, for all x,
$$af(x + a') + bf(x + b') = cf(x + d).$$

The object of this note is to show that, conversely, any function $f(x)$ which has property (I) and either (II) or (III) is necessarily of the form $f(x) = A \cos n(x + B)$. The latter result is used to derive the parallelogram law of addition of forces from certain other basic assumptions.

Theorem 1. Let $f(x)$ have properties (I) and (II). Then there exist constants A, B and an integer n such that $f(x) = A \cos n(x + B)$.

Proof. It follows from (II) that $f(x)$ is of class C^∞ and hence, from (I), can be represented by a convergent Fourier series, which, moreover, may be differentiated termwise. Thus for some complex constants k_n,

\begin{equation}
 f(x) = \sum k_n e^{inx}, \quad f'(x) = \sum in k_n e^{inx},
\end{equation}

\begin{equation}
 f'(x) - af(x + b) = \sum k_n (in - ae^{inb}) e^{inx}.
\end{equation}

It follows from (II) that for every integer n,
\begin{equation}
 k_n (in - ae^{inb}) = 0.
\end{equation}

If $f(x) \equiv 0$ then the theorem is trivial. Otherwise, there will exist an n for which $k_n \neq 0$. It follows that
\begin{equation}
 in = ae^{inb}.
\end{equation}

Taking absolute values we have
\begin{equation}
 n = \pm a.
\end{equation}

Thus there can be at most two values of n for which $k_n \neq 0$, and these

Received by the editors March 3, 1944.

750
values are negatives of one another. Thus for some integer n,

$$f(x) = k_{-n}e^{-inx} + k_ne^{inx}.$$

Since, by (I), $f(x)$ is real valued, it follows that k_{-n} and k_n are complex conjugates, and the proof is complete.

Theorem 2. Let $f(x)$ have properties (I) and (III). Then there exist constants A, B and an integer n such that $f(x) = A\cos n(x+B)$.

Proof. Since, by (I), $f(x)$ is continuous and of period 2π, it possesses at least a formal Fourier series,\(^1\)

$$f(x) \sim \sum k_ne^{inx}, \quad k_n = \frac{1}{2\pi} \int_0^{2\pi} f(t)e^{-int}dt.$$

By (III), there exist constants c, d such that the function

$$g(x) = f(x+1) + f(x) - cf(x+d),$$

continuous and of period 2π, is identically zero. (This is the only consequence of (III) that we shall use.) Hence

$$0 \sim \sum k_n(e^{in} + 1 - ce^{ind})e^{inx}.$$

It follows that for every n,

$$k_n(e^{in} + 1 - ce^{ind}) = 0.$$

If $f(x) \equiv 0$ then the theorem is trivial. Otherwise, there will exist an n for which $k_n \neq 0$. For any such n it follows from (9) that

$$e^{in} + 1 = ce^{ind}.$$

Taking absolute values and squaring, it follows that

$$\cos n = (c^2 - 2)/2.$$

Hence if m and n are any two integers for which $k_m, k_n \neq 0$, it follows from (11) that $\cos m = \cos n$. Hence for some integer r,

$$m = \pm n + 2\pi r.$$

Since π is irrational, it follows that $r = 0$ and $m = \pm n$. Thus the formal Fourier series for $f(x)$ consists of only two terms,

$$f(x) \sim k_{-n}e^{-inx} + k_ne^{inx}.$$

But in this case, since the functions e^{inx} are complete with respect

\(^1\) The proof given here follows a suggestion of Paul R. Halmos. The author's original proof required the unnecessary assumption that $f(x)$ be of class C^1.\]
to continuous functions, the relation \(\sim \) can be replaced by an identity,

\[
(14) \quad f(x) = k_-n e^{-inx} + k_n e^{inx}.
\]

Since \(f(x) \) is real valued, \(k_-n \) and \(k_n \) must be complex conjugates, and the theorem is proved.

We shall now apply Theorem 2 to derive the law of addition of forces. For simplicity, let us consider only forces acting at a fixed point in a fixed plane in which the angular coordinate \(x \) is defined. With such a force we identify the real valued function \(F(x) \) which specifies the scalar component of the force in the direction \(x \); thus a force is represented by a real valued function of period \(2\pi \). By the sum of two forces \(F_1(x) \) and \(F_2(x) \) we mean the function \(F_1(x) + F_2(x) \). Our assumptions are the following:

(i) All forces are geometrically similar. By this we mean that there exists a fixed function \(f(x) \) of period \(2\pi \) such that any force \(F(x) \) can be written in the form

\[
(15) \quad F(x) = A_F \cdot f(x + \alpha_F),
\]

where \(A_F \) and \(\alpha_F \) are constants determined by \(F(x) \). We need not assume that all values of the constants \(A_F \) and \(\alpha_F \) can occur in (15), but we shall assume that there exist at least the forces \(F_1(x) = f(x) \) and \(F_2(x) = f(x+1) \).

(ii) The sum of two forces is a force. Together with (i), this implies that the function \(f(x) \) has the property that for certain constants \(c, d \) and for every \(x \),

\[
(16) \quad f(x + 1) + f(x) = cf(x + d).
\]

(iii) The function \(f(x) \) is continuous, non-constant, and vanishes for at most two values in the interval \(0 \leq x < 2\pi \).

The proof of Theorem 2 shows that the function \(f(x) \), continuous, real valued, of period \(2\pi \), and satisfying (16), must be of the form

\[
(17) \quad f(x) = A \cos n(x + B),
\]

where \(n \) is an integer. The hypotheses of (iii) ensure that \(n \) can be chosen as 1. The parallelogram law of addition of forces is an immediate consequence.

United States Naval Academy, Post Graduate School
