ORBIT-CLOSURE DECOMPOSITIONS AND ALMOST PERIODIC PROPERTIES

W. H. GOTTSCALK

Let X be a metric space with metric ρ, let $f(X) \subset X$ be a continuous mapping, and let $h(X) = X$ be a homeomorphism. For $x \in X$, the set $\bigcup_{n=0}^{+\infty} f^n(x)$ is called the semi-orbit of x under f and the set $\bigcup_{n=0}^{+\infty} h^n(x)$ is called the orbit of x under h. For $x \in X$, the closure of the semi-orbit of x under f is called the semi-orbit-closure of x under f and the closure of the orbit of x under h is called the orbit-closure of x under h.

A nonvacuous subset Y of X is said to be semi-minimal (minimal) under $f(h)$ provided that the semi-orbit-closure (orbit-closure) of each point of Y is Y. Clearly, any two semi-minimal (minimal) sets are either coincident or disjoint. It is easily proved that a subset Y of X is semi-minimal (minimal) under $f(h)$ if and only if Y is nonvacuous, closed, $f(Y) \subset Y (h(Y) = Y)$, and furthermore Y contains no proper subset with these properties. We follow Birkhoff [2, p. 198] in the terminology of "minimal set."

A decomposition of X is defined to be a collection of nonvacuous closed pairwise disjoint subsets of X which fill up X. We say that the mapping f gives a semi-orbit-closure (a semi-minimal set) decomposition provided that the collection of semi-orbit-closures (semi-minimal sets) is a decomposition of X. Also, it is said that the homeomorphism h gives an orbit-closure (a minimal-set) decomposition provided that the collection of orbit-closures (minimal sets) is a decomposition of X.

A point x of X is said to be almost periodic under f provided that to each $\varepsilon > 0$ there corresponds a positive integer N with the property that in every set of N consecutive positive integers appears an integer n such that $\rho(x, f^n(x)) < \varepsilon$. The mapping f is said to be pointwise almost periodic provided that each point of X is almost periodic under f. It is to be noted that various writers use the above terms in different senses and employ other terminologies for these notions.

Lemma 1. The mapping f (homeomorphism h) gives a semi-orbit-closure (an orbit-closure) decomposition if and only if $f(h)$ gives a semi-minimal-set (a minimal-set) decomposition; and in either event, the two decompositions coincide.

Presented to the Society, August 14, 1944; received by the editors May 15, 1944 and November 15, 1944.

1 Numbers in brackets refer to the bibliography at the end of the paper.
The proof is easy and will be omitted.

Lemma 2. In order that the homeomorphism h give an orbit-closure decomposition it is sufficient that h give a semi-orbit-closure decomposition; and in case X is compact, this condition is also necessary. In either event, the two decompositions coincide.

Proof. The proof of the sufficiency is easy and will be omitted. We establish the necessity. Let C be an orbit-closure. By Lemma 1, it is enough to show that C is a semi-minimal set. Let Y be a nonvacuous closed subset of C such that $h(Y) \subset Y$. The proof will be completed if we show $Y = C$. Define $Z = \prod_{n=0}^{\infty} h^n(Y)$. Now Z is a nonvacuous closed subset of C such that $h(Z) = Z$. Since C is a minimal set by Lemma 1, $Z = C$ and, hence, $Y = C$.

Lemma 3. If $x \in X$ is almost periodic under f, then the semi-orbit-closure C of x is semi-minimal.

Proof. Suppose C is not semi-minimal. Then there exists a point y of C such that the semi-orbit-closure Y of y is not C. Now $Y \subset C$. Also $x \in Y$, since otherwise $C \subset Y$ and thus $Y = C$. Let 2ε be the distance from x to Y. There exists a positive integer N such that in every set of N consecutive positive integers appears an integer n so that $\rho(x, f^n(x)) < \varepsilon$. Choose $\delta > 0$ so small that $z \in X$ with $\rho(y, z) < \delta$ implies $\rho(f^i(y), f^i(z)) < \varepsilon$ ($i = 1, 2, \ldots, N$). Now there exists a non-negative integer p such that $\rho(y, f^p(x)) < \delta$. Also it is possible to find an integer q, $1 \leq q \leq N$, so that $\rho(x, f^{p+q}(x)) < \varepsilon$. Hence, $\rho(x, f^q(y)) < 2\varepsilon$ which is impossible.

Lemma 4. If X is locally compact and if the subset Y of X is semi-minimal under f, then each point of Y is almost periodic.

Proof. Assume some point x of Y is not almost periodic. There exists a neighborhood U of x such that U is compact and such that for each positive integer n there exists a point x_n of $U \cdot Y$ with the property that $f^n(x_n) \in U$ $(m = 1, 2, \ldots, n)$. Some subsequence of x_1, x_2, \ldots converges to some point, say y, of $U \cdot Y$. There exists a positive integer M such that $f^M(y) \in U$ and, hence, there also exists a neighborhood V of y such that $f^M(V) \subset U$. Choose an integer N so that $N > M$ and $x_N \in V$. Then, $f^M(x_N) \in U$ which is a contradiction.

Theorem 1. In order that the mapping f give a semi-orbit-closure decomposition, it is sufficient that f be pointwise almost periodic; and in case X is locally compact, this condition is also necessary.

The proof follows easily from Lemmas 1, 3 and 4.
THEOREM 2. In order that the homeomorphism \(h \) give an orbit-closure decomposition it is sufficient that \(h \) be pointwise almost periodic; and in case \(X \) is compact, this condition is also necessary.

The proof proceeds easily from Theorem 1 and Lemma 2.

We pause in our main development to comment on the rôle of local compactness in the second part of Theorem 1. In this case the semi-orbit-closures are actually compact, as the following indicates.

THEOREM A. If \(x \in X \) is almost periodic under \(f \) and if there exists a neighborhood \(U \) of \(x \) whose closure is compact, then the semi-orbit-closure of \(x \) is itself compact.

Proof. There exists an integer \(N \) and a sequence \(\{ n_i \} \), \(i = 0, 1, \ldots \) of integers such that \(0 = n_0 < n_1 < \cdots \), \(n_{i+1} - n_i \leq N \) and \(f^{n_i}(x) \in U \) for all \(i \). Define \(K = \bigcup_{r=0}^{N} f^r(U) \). Now \(K \) is compact. We show the semi-orbit of \(x \) is contained in \(K \), which completes the proof. Let \(n \) be any non-negative integer. There exists a non-negative integer \(i \) such that \(n_i \leq n \leq n_{i+1} \). Hence, \(f^n(x) = f^{n-n_i}f^{n_i}(x) \in f^{n-n_i}(U) \subseteq K. \)

THEOREM B. If \(Y \subseteq X \) is semi-minimal under \(f \) and if \(Y \) intersects a neighborhood \(U \) whose closure is compact (in particular, if \(X \) is locally compact), then \(Y \) is itself compact.

Proof. Let \(y \in Y \cdot U \). By the argument used in the proof of Lemma 4, it can be shown that \(y \) is almost periodic. The conclusion now follows from Theorem A. (Theorem B is not valid for a minimal set as the example of a discrete infinite orbit shows.)

Besicovitch [1] has constructed an interesting example of a homeomorphism of the plane onto itself which possesses some semi-orbits dense in the plane and which leaves the origin fixed. He seems to remark at the end of his paper (p. 65) that every semi-orbit, excluding the origin, is also dense in the plane. Theorem B would indicate that either this remark or our interpretation of it is in error. For, take \(X = Y \) to be the plane with the origin deleted. If every semi-orbit is dense in the punctured plane, then the punctured plane would be compact. Question: In Besicovitch's example [1], is the orbit of every point of the plane, excepting the origin, dense in the plane? We now continue with the main sequence of theorems.

Let \(\{ X_n \} \), \(n = 1, 2, \ldots \) be a sequence of subsets of \(X \). The set of all points \(x \) of \(X \) such that each neighborhood of \(x \) intersects \(X_n \) for...
almost all (infinitely many) positive integers \(n \) is denoted by
\[
\lim \inf \{ X_n \} \quad \text{and} \quad \lim \sup \{ X_n \}.
\]
In case \(\lim \inf \{ X_n \} = \lim \sup \{ X_n \} \),
we denote this set by \(\lim \{ X_n \} \). Of course, for any sequence \(\{ X_n \} \),
\(\lim \inf \{ X_n \} \subseteq \lim \sup \{ X_n \} \).

Let \(D \) be a decomposition of \(X \). For \(x \in X \), let \(D(x) \) denote the element
of \(D \) containing \(x \). The decomposition \(D \) is said to be continuous
provided that \(x_0, x_n \in X \ (n = 1, 2, \cdots) \) with \(x_n \to x_0 \) implies \(D(x_0) \subseteq \lim \inf \{ D(x_n) \} \subseteq \lim \sup \{ D(x_n) \} \subseteq D(x_0) \).

Following G. A. Hedlund, we say the mapping \(f \) is uniformly pointwise almost periodic
provided that to each \(\varepsilon > 0 \) there corresponds a positive integer \(N \)
such that if \(x \in X \), then in every set of \(N \) consecutive positive integers appears an integer \(n \) so that
\(\rho(x, f^n(x)) < \varepsilon \). Clearly, if \(f \) is uniformly pointwise almost periodic, then \(f \) is pointwise
almost periodic.

Lemma 5. For \(x \in X \), let \(C(x) \) denote the semi-orbit-closure of \(x \) under \(f \).
If \(x_0, x_n \in X \ (n = 1, 2, \cdots) \) with \(x_n \to x_0 \), then \(C(x_0) \subseteq \lim \inf \{ C(x_n) \} \).

Proof. Let \(x \in C(x_0) \) and let \(U \) be any neighborhood of \(x \). For some
non-negative integer \(k, f^k(x_0) \in U \). By the continuity of \(f^k, f^k(x_0) \in U \)
for almost all positive integers \(n \), that is, \(U \) intersects \(C(x_0) \) for almost
all positive integers \(n \). The conclusion follows.

Theorem 3. In order that the mapping \(f \) give a continuous semi-orbit-closure decomposition
it is sufficient that \(f \) be uniformly pointwise almost periodic; and in case \(X \) is compact, this condition is also necessary.

Proof. We establish the sufficiency. Let \(D \) denote the collection
of semi-orbit-closures. By Theorem 1, \(D \) is a decomposition of \(X \).
By Lemma 5, it is enough to prove that \(\lim \sup \{ C(x_n) \} \subseteq C(x_0) \)
for \(x_0, x_n \in X \ (n = 1, 2, \cdots) \) with \(x_n \to x_0 \), where \(C(x) \) denotes the semi-orbit-closure of the point \(x \). Assume this is false. Then there exist points
\(x_0, x_n \in X \ (n = 1, 2, \cdots) \) such that \(x_n \to x_0 \) and \(\lim \sup \{ C(x_n) \} \subsetneq C(x_0) \). Thus there exist a point \(x \) of \(X \), a monotone increasing sequence \(n_1, n_2, \cdots \) of positive integers, and a sequence \(m_1, m_2, \cdots \) of
non-negative integers such that \(f^{m_i(x_{n_i})} \to x \) and \(x \in C(x_0) \). Hence,
\(C(x) \cdot C(x_0) = \varnothing \) and \(x_0 \in C(x) \). Let \(2\varepsilon \) denote the distance from \(x_0 \) to \(C(x) \).
Since \(f \) is uniformly pointwise almost periodic, there exists a positive integer \(k \) such that for each positive integer \(i \) it is possible to
find an integer \(k_i \) with the properties that \(1 \leq k_i \leq k \) and
\(\rho(x_{n_i}, f^{m_i+k_i(x_{n_i})}) < \varepsilon \). There exists an integer \(k_0 \) such that \(k_i = k_0 \)
for infinitely many positive integers \(i \). Since also \(x_{n_i} \to x_0 \) and \(f^{m_i+k_0(x_{n_i})} \to f^{k_0}(x) \), we have
\(\rho(x_0, f^{k_0}(x)) \leq \varepsilon < 2\varepsilon \). Hence, the distance from \(x_0 \) to \(C(x) \) is less than \(2 \varepsilon \). This is a contradiction.
We establish the necessity. Suppose \(f \) is not uniformly pointwise almost periodic. Then there exists a positive number \(\epsilon \) such that for each positive integer \(n \) it is possible to find a positive integer \(m_n \) and a point \(x_n \) of \(X \) such that \(N_\epsilon(x_n) \cdot \sum_{i=0}^{m_n} f^{m_n+i}(x_n) = \Lambda \), where \(N_\delta(y) \) denotes the \(\delta \)-neighborhood of the point \(y \). We may suppose that \(x_n \to x_0 \) and \(f^{m_n}(x_n) \to x \) for some points \(x_0, x \) of \(X \). For all sufficiently large positive integers \(n \), \(N_{\epsilon/2}(x_0) \cdot \sum_{i=0}^{m_n} f^{m_n+i}(x_n) = \Lambda \). It follows that \(N_{\epsilon/2}(x_0) \cdot C(x) = \Lambda \) and \(x_0 \in C(x) \), where \(C(y) \) denotes the semi-orbit-closure of the point \(y \). Now \(\lim \{ C(x_n) \} = C(x_0) \) and \(C(x) = \lim \{ C(f^{m_n}(x_n)) \} = \lim \{ C(x_n) \} \). Hence, \(C(x_0) = C(x) \) and \(x_0 \in C(x) \). This is a contradiction.

Theorem 4. In order that the homeomorphism \(h \) give a continuous orbit-closure decomposition it is sufficient that \(h \) be uniformly pointwise almost periodic; and in case \(X \) is compact, this condition is also necessary.

The proof follows readily from Theorem 3 and Lemma 2.

It is worthy of note that if \(X \) is compact, then there exists a subset \(Y \) of \(X \) such that \(f(Y) = Y \) is uniformly pointwise almost periodic. The proof is short. The property \(P \) of being a nonvacuous closed subset \(Z \) of \(X \) such that \(f(Z) \subseteq Z \) is easily shown to be inducible. By the Brouwer reduction theorem, there exists a subset \(Y \) which has property \(P \) irreducibly. Then \(Y \) is semi-minimal and \(f(Y) = Y \), since \(f(Y) \) has property \(P \). The conclusion now follows from Theorem 3.

Bibliography