NOTE ON INTERPOLATION FOR A FUNCTION OF
SEVERAL VARIABLES

HERBERT E. SALZER

The simplest interpolation formula for a function of \(\omega \) variables \(x, y, \cdot \cdot \cdot, z \) is the multiple Gregory-Newton formula, which approximates the function by a polynomial in \(p, q, \cdot \cdot \cdot, r \) of total degree \(n \), namely,

\[
f(x + ph_1, y + qh_2, \cdot \cdot \cdot, z + rh_\omega)
\]

\[
= \sum_{i+j+\cdot \cdot \cdot+b=0}^{n} \left(\begin{array}{l} p \\ i \end{array} \right) \left(\begin{array}{l} q \\ j \end{array} \right) \cdots \left(\begin{array}{l} r \\ k \end{array} \right) \Delta^{i+j+\cdot \cdot \cdot+b}_{x^i y^j \cdot \cdot \cdot z^k} f(x, y, \cdot \cdot \cdot, z),
\]

where \(x, y, \cdot \cdot \cdot, z \) denote the independent variables, \(h_m \) denotes the tabular intervals,

\[
\left(\begin{array}{l} p \\ i \end{array} \right) \] denotes \(\frac{p!\cdots(p-i+1)}{i!} \), with \(\left(\begin{array}{l} p \\ 0 \end{array} \right) = 1, \]

and \(\Delta^{i+j+\cdot \cdot \cdot+b}_{x^i y^j \cdot \cdot \cdot z^k} f(x, y, \cdot \cdot \cdot, z) \) denotes the mixed partial advancing difference of \(f(x, y, \cdot \cdot \cdot, z) \), of order \(i \) with respect to \(x \), \(j \) with respect to \(y \), and so on. The summation is for all sets of values of \(i, j, \cdot \cdot \cdot, k \) such that \(i+j+\cdot \cdot \cdot+k \) goes from 0 to \(n \). Using the notation \(f_s, t, \cdot \cdot \cdot, u \) to denote \(f(x+sh_1, y+th_2, \cdot \cdot \cdot, z+uh_\omega) \), it is apparent that the multiple Gregory-Newton formula involves all values \(f_s, t, \cdot \cdot \cdot, u \) such that \(s+t+\cdot \cdot \cdot+u=0, 1, 2, \cdot \cdot \cdot, n \). Thus for the case of 2 dimensions the arguments are the \((n+1)(n+2)/2 \) points forming a right triangle, vertex at \((x, y) \), and for 3 dimensions the arguments are the \((n+1)(n+2)(n+3)/6 \) points forming a solid tetrahedron, vertex at \((x, y, z) \).

The purpose of the present note is to show that when (1) is expressed in the simpler form

\[
(2) \quad f(x + ph_1, y + qh_2, \cdot \cdot \cdot, z + rh_\omega) = \sum_{s+t+\cdot \cdot \cdot+u=0}^{n} C_s, t, \cdot \cdot \cdot, u f_s, t, \cdot \cdot \cdot, u,
\]

then we have

\[
(3) \quad C_s, t, \cdot \cdot \cdot, u = \binom{n-p-q-\cdot \cdot \cdot-r}{n-s-t-\cdot \cdot \cdot-u} \binom{p}{s} \binom{q}{t} \cdots \binom{r}{u}.
\]

Thus (1) can be employed without the labor of finding all the mixed

Received by the editors September 9, 1944.

279
partial differences, which represents a very convenient simplification in the use of the multiple Gregory-Newton formula.

To prove (3) consider the function

\[
\binom{n - x - y - \cdots - z}{n - s_1 - t_1 - \cdots - u_1} \binom{x}{s_1} \binom{y}{t_1} \cdots \binom{z}{u_1},
\]

where \(s_1, t_1, \cdots, u_1\) are any set of non-negative integers whose sum is not greater than \(n\). This function is a polynomial in \(x, y, \cdots, z\) of total degree \(n\) and (2) holds exactly. Applying (2) for \(x = y = \cdots = z = 0, h_1 = h_2 = \cdots = h_u = 1\), it is apparent that with the exception of \(f_{s_1, t_1, \cdots, u_1} = 1\), all the other quantities \(f_{s, t, \cdots, u}\) vanish, because if some \(s, t, \cdots, u\) is less than a respective \(s_1, t_1, \cdots, u_1\), or if every \(s, t, \cdots, u\) is greater than or equal to a respective \(s_1, t_1, \cdots, u_1\) with at least one greater than, then \(f_{s, t, \cdots, u}\) will have a factor

\[
\binom{a}{b}, \quad a \text{ and } b \text{ integers},
\]

\(b > a\), which is 0. This establishes (3).

\[\text{MATHEMATICAL TABLES PROJECT,}\]
\[\text{NATIONAL BUREAU OF STANDARDS}\]

\[1\] This line of proof was suggested by Professor W. E. Milne. Another longer proof is by induction, making use of the properties of \(\binom{n}{k}\) and Newton's backward-difference interpolation formula.