THE BASIS THEOREM FOR VECTOR SPACES OVER RINGS

C. J. EVERETT

It is the purpose of this note to establish the following theorem:

Theorem. A vector space $M = u_1 K + \cdots + u_m K$ of m basis elements over a ring $K = \{0, a, b, \cdots, 1\}$ with unit 1 has the property that every subspace $N > 0$ possesses a basis of $n \leq m$ elements if and only if K is a right principal-ideal-ring without zero-divisors.

That such a ring insures the basis condition for subspaces is well known [3, p. 121].

Suppose now that every subspace $N > 0$ has a basis of $n \leq m$ elements. It has been shown [2, Theorem (F)] that every right ideal $R > 0$ of K must then have a single generator: $R = r_0 K$, where $r_0 k = 0$ implies $k = 0$. Moreover, since every right ideal has a finite set of generators, the ascending chain condition must hold for right ideals of K [3, p. 26]. It therefore suffices to prove the following two lemmas.

Lemma 1. In a ring K with unit 1 and ascending chain condition for right ideals, equations $ab = 1$, $ac = 0$ imply $c = 0$.

If $c \neq 0$, the linear transformation $k \mapsto ak$, $k \in K$, would be of type (iv) [2, p. 313], that is, $K/K_0 \cong K$, and $0 < K_0 < K_1 < K_2 < \cdots$, where K_i is defined inductively as the set of all elements of K mapped into elements of K_{i-1}. This contradicts the chain condition.

Lemma 2. A ring K with unit in which every right ideal $R > 0$ is of the form $r_0 K$, where $r_0 k = 0$ implies $k = 0$, has no zero divisors.

Let $sc = 0$, $s \neq 0$, and $s K = r_0 K \neq 0$, where $r_0 k = 0$ implies $k = 0$. We have $s = r_0 a$, $r_0 = sb = r_0 \cdot ab$, $r_0 (ab - 1) = 0$, and hence $ab = 1$. Also, $sc = 0 = r_0 ac$, and $ac = 0$. Since Lemma 1 applies to K, $c = 0$.

It should be noted that the result follows also from a result of Baer's [1, Theorem 5 or Lemma 4] which states that in a ring with unit and weak maximal condition, $ab = 1$ implies $ba = 1$.

Bibliography

Presented to the Society, November 25, 1944; received by the editors February 14, 1945.

1 Numbers in brackets refer to the bibliography.

UNIVERSITY OF WISCONSIN

ON A CONSTRUCTION FOR DIVISION ALGEBRAS OF ORDER 16

R. D. SCHAER

It is not known whether there exist division algebras of order 16 (or greater) over the real number field \mathbb{R}. In discussing the implications of this question in algebra and topology, A. A. Albert told the author that the well known Cayley-Dickson process\(^1\) does not yield a division algebra of order 16 over \mathbb{R} and suggested a modification of that process which might. It is the purpose of this note to show that, while Albert's construction can in no instance yield such an algebra over \mathbb{R}, it does yield division algebras of order 16 over other fields, in particular the rational number field \mathbb{Q}.

Initially consider an arbitrary field F. Let C be a Cayley-Dickson division algebra of order 8 over F. Define\(^2\) an algebra of order 16 over F with elements $c=a+vb$, $z=x+vy$ (a, b, x, y in C) and with multiplication given by

\[(1) \quad cz = (a + vb)(x + vy) = (ax + g \cdot ybS) + v(aS \cdot y + xb)\]

where S is the involution $x \mapsto xS = t(x) - x$ of C and g is some fixed element of C. The Cayley-Dickson process is of course the instance $g = \gamma$ in F.

For A to be a division algebra over F the right multiplication\(^1\) R_z must be nonsingular for all $z \neq 0$ in A. Now

\[R_z = \begin{pmatrix} R_z & SR_y \\ SL_vL_x & L_z \end{pmatrix}\]

Received by the editors January 19, 1945, and, in revised form, March 19, 1945.

\(^1\) See [1] and [2] for background and notations. Numbers in brackets refer to the references cited at the end of the paper.

\(^2\) We should remark that this modification of the Cayley-Dickson process does yield non-alternative division algebras of orders 4 and 8 over \mathbb{R} when applied to the algebras of complex numbers and real quaternions instead of to C. See R. H. Bruck, Some results in the theory of linear non-associative algebras, Trans. Amer. Math. Soc. vol. 56 (1944) pp. 141–199, Theorem 16C, Corollary 1, for a generalization.