NULL SYSTEMS IN PROJECTIVE SPACE

REINHOLD BAER

If P is an (abstract) n-dimensional projective space, then we define a polarity in P as a correspondence ϕ associating with every point Q in P a hyperplane Q^ϕ and with every hyperplane h in P a point h^ϕ in such a way that:

(i) $Q = Q^\phi$ for every point Q and $h = h^\phi$ for every hyperplane h.

(ii) The point Q is on the hyperplane h if, and only if, the hyperplane Q^ϕ passes through the point h^ϕ.

It is an immediate consequence of (i) that polarities are 1:1 correspondences.

We shall term ϕ a null-polarity if the polarity ϕ has the additional property that:

(iii) Every point Q is on the corresponding hyperplane Q^ϕ, and consequently every hyperplane h passes through the corresponding point h^ϕ.

Extending a result of Veblen and Young, R. Brauer\(^1\) has shown that the existence of a null-polarity in P implies that the number n of dimensions of P is odd, and he has connected the null-polarities with the so-called null-systems, provided P is the n-dimensional projective space over a commutative field of coordinates. It is the object of the present note to show that this last hypothesis may be omitted; more precisely we are going to show that if the dimension of P is greater than 1, then the existence of a null polarity is equivalent to the fact that P is of odd dimension and is a projective space over a commutative field of coordinates.

If P is a projective space of dimension 1, then the hyperplanes are points too. The identity transformation on the points of the line P is therefore the null-polarity of P. For this reason we shall assume throughout the remainder of this note that P be of dimension greater than 1.

The case of a projective plane P has to be treated separately from the others, since the Theorem of Desargues need not hold true in a projective plane, though it is true for all the higher-dimensional projective spaces.

A projective plane is a system of points and lines such that any two different lines meet in one and only one point, any two different

Lemma. If p is a polarity of the projective plane P, if Q and R are different points in P such that Q is on the line Q^p and R is on the line R^p, then Q is not on R^p (nor is R on Q^p).

Proof. If Q were on R^p, then R^p would be the uniquely determined line through the two different points R and Q, since R is on R^p. Furthermore R would be on Q^p; and it would follow likewise that Q is the uniquely determined line through R and Q. Thus $R^p = Q^p$ and hence $R = Q$, a contradiction proving our contention.

Corollary. There does not exist a null-polarity in a projective plane.

This is an immediate consequence of the lemma.

Because of the corollary we shall assume throughout the remainder of this note that the dimension of the projective space P is at least 3. In this case P is the n-dimensional projective space over an essentially uniquely determined, not necessarily commutative, field F.

If F is any field (commutative or not), and if n is an integer not less than 3, then we denote by (F, n) an additively written abelian group, admitting the elements in F as left-multipliers, and having the rank $n + 1$ over F. The n-dimensional projective space over F is then essentially the same as the partially ordered set $P(F, n)$ of all the F-admissible subgroups of (F, n), the points being of the form Fx with $x \neq 0$, and the hyperplanes being of rank n.

Every polarity p of $P(F, n)$ may, as is well known, be represented in the following form: There exist an anti-automorphism a of F (satisfying $a^2 = 1$) and an F-valued function $f(x, y)$, for x, y in (F, n), satisfying:

\begin{align*}
f(x, y) &= 0 \text{ if, and only if, } f(y, x) = 0; \\
f(ux + vy, z) &= uf(x, z) + vf(y, z), \quad f(z, ux + vy) = f(z, x)u^a + f(z, y)v^a.
\end{align*}

The point Fx is on the hyperplane $(Fy)^p$ if, and only if, $f(x, y) = 0$.

Assume now that the polarity p be a null-polarity. This is equivalent to saying $f(x, x) = 0$ for every x in (F, n). If $x \neq 0$, then there exists

2 A proof of this fact may be effected in essentially the same fashion as done by R. Brauer, op. cit. pp. 251, 252, in the case of commutative F; for a detailed proof of a more comprehensive fact see R. Baer, A unified theory of projective spaces and finite abelian groups, Trans. Amer. Math. Soc. vol. 52 (1942) pp. 315–317.

3 We state here only such properties of the function $f(x, y)$ as will be needed later. Further properties have to be imposed to assure that, conversely, every such $f(x, y)$ defines a polarity. Note in particular that no use has been made of the involutorial character of a.

at least one \(y \) such that \(f(x, y) \neq 0 \), since otherwise \((Fx)^p \) would be the whole space instead of only a hyperplane. Let \(x, y \) be any pair of elements such that \(f(x, y) \neq 0 \). If \(t \) is some element in \(F \), then we find

\[
0 = f(x + ty, x + ty) = f(x, x) + tf(y, x) + tf(y, y) = f(x, y)^a + tf(y, x).
\]

Substituting \(t = 1 \), we obtain \(f(x, y) + f(y, x) = 0 \); and thus the above equation reduces to \(0 = f(x, y)^a - tf(x, y) \). Since \(f(x, y) \neq 0 \), this implies \(t^a = f(x, y)^{-1}tf(x, y) \) for every \(t \) in \(F \), proving that the anti-automorphism \(a \) of \(F \) is an inner automorphism of \(F \). Hence \(F \) is commutative and \(a = 1 \). Combining this with the fact that \(f(x, y) = 0 \) if, and only if, \(f(y, x) = 0 \), we see that \(f(x, y) \) is actually a skew-symmetric bilinear form.

It is well known\(^4\) that there exists to every skew-symmetric, \(F \)-valued bilinear form \(f(x, y) \) over \((F, n) \) a basis \(x(1), \ldots, x(m), y(1), \ldots, y(m), z(1), \ldots, z(k) \) of \((F, n) \), meeting the following requirements:

(a) \(0 \leq m, \quad 0 \leq k, \quad 2m + k = n + 1 \);

(b) \(f(x(i), y(i)) = 1 \) for \(1 \leq i \leq m \);
\[
f(x(i), x(j)) = f(y(i), y(j)) = 0 \quad \text{for every } i \text{ and } j;
\]

(c) \(f(x(i), z(j)) = f(y(i), z(j)) = f(z(i), z(j)) = 0 \) for every \(i \) and \(j \);
\[
f(x(i), y(j)) = 0 \quad \text{for every } i \neq j.
\]

This implies in particular \(f(x, z(i)) = 0 \) for every \(x \) in \((F, n) \) so that the hyperplane \((Fx(i))^p \) would contain every point of the space, an impossibility proving \(k = 0 \) and \(n = 2m - 1 \). Summarizing our results we obtain:

If \(P \) is a projective space of dimension \(n \), greater than 1, and if \(p \) is a null-polarity in \(P \), then \(n = 2m - 1 \) for \(m \) a positive integer, \(P \) is the \(n \)-dimensional projective space over a commutative field \(F \), and there exists a system of homogeneous coordinates in \(P \) such that the point \(F(x_0, \ldots, x_{2m-1}) \) is on the hyperplane \([F(y_0, \ldots, y_{2m-1})]^p \) if, and only if,

\[
0 = \sum_{i=0}^{m-1} (x_{2i+1}y_{2i} - y_{2i+1}x_{2i}).
\]

Combining all our results one deduces without difficulty the following facts.

Theorem A. In an n-dimensional projective space there exists essentially at most one null-polarity.

Theorem B. In the n-dimensional projective space P with $1 < n$ there exists a null-polarity if, and only if, n is odd and P is the projective space of dimension n over a commutative field.

University of Illinois