INEQUALITIES CONNECTING SOLUTIONS OF CREMONA'S EQUATIONS

G. B. HUFF

1. Introduction. Let a complete and regular linear system $\Sigma_{p,d}$ of plane curves of dimension d, the genus of the general curve being p, be determined by its order x_0, and its multiplicities x_1, \ldots, x_p at a set of p general base points. $x = (x_0; x_1, \ldots, x_p)$ is called the characteristic of $\Sigma_{p,d}$ and satisfies Cremona's equations:

\begin{align*}
\frac{x_0^2}{2} - x_1 - x_2 - \cdots - x_p \equiv (xx) &= d + p - 1, \\
3x_0 - x_1 - x_2 - \cdots - x_p \equiv (lx) &= d - p + 1.
\end{align*}

On the other hand, an integer solution x of (1) may or may not determine a linear system. If an x does determine a $\Sigma_{p,d}$, it is said to be proper. In this definition is included the usual convention that $(0; -1, 0, \ldots, 0)$ is a proper characteristic of the set of directions at a base point $[1]$.\(^1\)

If a system $\Sigma_{p,d}$ of characteristic x is subjected to a Cremona transformation C with F-points at the base points of Σ, $\Sigma \rightarrow \Sigma_{p,d}$ whose characteristic x' at the F-points of C^{-1} is given by:

\begin{align*}
L: \quad x'_0 &= (cx) = c_0x_0 - c_1x_1 - c_2x_2 - \cdots - c_px_p, \\
x'_i &= (f^i x) = f^i_0x_0 - f^i_1x_1 - f^i_2x_2 - \cdots - f^i_px_p, \\
&\quad i = 1, 2, \ldots, p.
\end{align*}

Here c is the characteristic of the homaloidal net of C^{-1} and the f^i are the characteristics of the P-curves of this net. Thus proper characteristics c of $p=0, d=2$ and proper characteristics f of $p=d=0$ play a central role in the theory and will be prominent in this article. The collection of all transformations L for a given p forms a group, G_p. G_p is generated by transformations L for which c is of type $(2; 1110 \cdots 0)$, and for any $L \in G_p$ the forms $(xx), (lx)$ and (xy) are invariant.

In this paper attention is restricted to characteristics of $x_0 > 0$, and $p \geq 0$ and $d \geq 0$. We shall designate this as property A and obtain inequalities implied by (1) and property A. The inequalities are interesting in themselves and lead to a criterion for distinguishing proper characteristics.

\(^1\) Numbers in brackets refer to the references cited at the end of the paper.
2. Inequalities involving the characteristics of homaloidal nets.

Theorem 1. If \(x \) has property A, then \(2x_0 - x_1 - x_2 - x_3 \geq 0 \). Moreover, the equals signs hold only for \(p = d = 0; x = (1; 110), (1; 101) \) or \((1; 011) \).

Since \((xx) = d + p - 1 \geq -1\), it may be shown that \(x_0 \geq x_i, i = 1, \ldots, p \). Indeed, set \(x_i = x_0 - a \) in \((xx) \geq -1:\)

\[
2ax_0 - a^2 - x_1^2 - \cdots - x_{i-1}^2 - x_{i+1}^2 - \cdots - x_p^2 \geq -1,
\]
or

\[
a(2x_0 - a) \geq -1.
\]

Since \(x_0 \) is a positive integer, \(a \) may not be negative. Thus the integers \(a_1, a_2, a_3 \) in \(x_1 = x_0 - a_1, x_2 = x_0 - a_2, x_3 = x_0 - a_3 \) are non-negative. Substituting these in the quadratic relation yields:

\[-2x_0 + 2x_0(a_1 + a_2 + a_3) - a_1^2 - a_2^2 - a_3^2 - x_4^2 - \cdots - x_p^2 \geq -1.
\]

Now \(a_1, a_2, a_3, x_4, \ldots, x_p \) cannot all vanish, for this would imply that \(-2x_0^2 \geq -1\). Thus:

\[
2x_0(a_1 + a_2 + a_3) - 2x_0^2 > 1
\]
or

\[
a_1 + a_2 + a_3 - x_0 > -1/2x_0.
\]

It follows that \(a_1 + a_2 + a_3 - x_0 \geq 0 \) and thus that

\[
2x_0 - (x_0 - a_1) - (x_0 - a_2) - (x_0 - a_3) \geq 0.
\]

If \(x \) is a characteristic with property A and \(2x_0 - x_1 - x_2 - x_3 = 0 \), then the image of \(x \) under

\[
x_0' = 2x_0 - x_1 - x_2 - x_3,
\]

\[
A_{123}: \ x_i' = x_i + (x_0 - x_1 - x_2 - x_3), \quad i = 1, 2, 3,
\]

\[
x_j' = x_j, \quad j = 4, \ldots, p,
\]

has \(x_0' = 0 \) and satisfies the same Cremona equations. Thus

\[
- x_1'^2 - x_2'^2 - \cdots - x_p'^2 = d + p - 1,
\]

\[
- x_1' - x_2' - \cdots - x_p' = d - p + 1.
\]

This is possible only for \(d, p = 0, 0; 1, 0 \) and 0, 1. A canvass of the cases reveals that \(d, p = 0 \) and \(x' = (0; -1 0 \cdots 0) \) comprise all possibilities. Thus \(x = (1; 110), (1; 101), (1; 011) \) are the only values of \(x \) for which the equals sign holds.
Since \((2; 1110 \cdots 0)\) is the characteristic of a homaloidal net of conics, the form of the inequality clearly suggests the following generalization:

Theorem 2. If \(x\) has property \(A\) and \(c\) is the characteristic of a homaloidal net, then \((cx) \geq 0\). Moreover, the equals sign holds only for the characteristics of the principal curves of the homaloidal net.

Consider first characteristics \(x\) of \(p+d > 0\). In this case, Theorem 1 asserts that any \(x'\) obtained from \(x\) under \(A_{ijk}\) has \(x'_0 > 0\). Since \(c\) is the characteristic of a homaloidal net, \(c\) is the image of \((1; 0, 0, \cdots, 0)\) under a sequence of transformations of the form \(A_{ijk}\). Let \(x \rightarrow x'\) under the sequence that sends \(c \rightarrow c' = (1; 0, \cdots, 0)\). Since \(x'_0 > 0\), it follows that \((c'x') > 0\). Thus \((cx) > 0\), for this bilinear relation is invariant under \(G_p\).

If \(p=0\), \(d=0\), a modification of the argument is required since in this case \(x'_0\) might vanish under some \(A_{ijk}\). But in this case \(x\) is by Theorem 1 a proper characteristic. Thus an improper characteristic \(x\) of \(p=d=0\) always goes into a characteristic of \(x'_0 > 0\) under \(A_{ijk}\) and the argument above applies. For proper characteristics \(x\) of \(p=d=0\), it is clear that \((cx) \geq 0\), else the rational curve would have too many intersections with the homaloidal net. If \((cx)=0\), \(x\) is the characteristic of a rational curve meeting the curves of the net only at the base points, and hence is the characteristic of a principal curve of the net.

3. **Inequalities involving characteristics of rational curves.**

Lemma. If \(x\) has property \(A\) and \(x^*\) denotes the same characteristic with \(x_p\) deleted, then \(x^*\) has property \(A\).

A simple computation yields for \(p', d'\) of \(x^*:\)

\[
d' = d + x_p(x_p + 1)/2, \quad p' - 1 = p - 1 + x_p(x_p - 1)/2.
\]

Since \(x_p(x_p+1)/2\) and \(x_p(x_p-1)/2\) are non-negative functions of the integer \(x_p\), the conclusion follows.

Theorem 3. If \(x\) has property \(A\) and \(p+d > 0\), and \(f\) is a proper characteristic of \(p=d=0\) and \((fx) < 0\), then \(x_0 > f_0\).

Since \(f\) is proper, there is [2] an \(L \subseteq G_p\) such that \(\tilde{f} = L(f) = (0; 0, \cdots, 0, -1)\). \(\tilde{x} = L(x)\) has \(\tilde{x}_0 > 0\) by Theorem 2 and \((f\tilde{x}) = (f\tilde{x}) < 0\). But \((f\tilde{x}) = \tilde{x}_0 < 0\). Thus \(\tilde{x}\) may be written in the form

\[
\tilde{x} = \tilde{x}^* + k\tilde{f},
\]

where \(k\) is a positive integer, and \(\tilde{x}^*\) is \(\tilde{x}\) with \(\tilde{x}_p\) deleted. Now consider the image of \(\tilde{x}\) under \(L^{-1}\).
\[L^{-1}(x) = L^{-1}(\bar{x}^* + kf) = L^{-1}(\bar{x}^*) + kL^{-1}(f), \]

or
\[x = L^{-1}(\bar{x}^*) + kf. \]

Now \(\bar{x}^* \) has \(\bar{x}_0^* > 0 \), and \(p' + d' > 0 \) by the lemma. Hence by Theorem 2 its image \((\bar{x}^*)' \) has \((\bar{x}_0^*)' > 0 \). Since
\[x_0 = (\bar{x}_0^*)' + kf_0, \]
it follows that \(x_0 > f_0 \).

Theorem 4. *If \(x \) has property A and \(p + d > 0 \), and \(f \) is a proper characteristic such that \(p = d = 0 \) and \(x_0 \equiv f_0 \), then \((fx) \equiv 0 \).*

Theorem 4 follows from Theorem 3 by formal reasoning and offers a generalization of a property of proper characteristics. For if \(x \) is a proper characteristic, \((fx) \equiv 0 \) follows from the fact that the curves of the system may not have more than \(f_0 x_0 \) intersections with the irreducible rational curve associated with \(f \). The significance of the theorem is that all characteristics \(f_0 \equiv x_0 > 0 \), \(p \equiv 0 \), \(d \equiv 0 \), \(p + d > 0 \) must enjoy this same property.

There are examples of characteristics with property A and \(p + d > 0 \) which even have \(x_i > 0 \), \(i = 1, \ldots, \rho \), for which there is an \(f \) of \(f_0 < x_0 \) such that \((fx) < 0 \). An early example is \((5; 3^11^6)\) and \((1; 1^20^6)\).

4. Applications.

Theorem 5. *Let \(x \) be a characteristic of property A and \(p + d > 0 \), such that \((fx) \equiv 0 \) for all proper \(f \) of \(p = d = 0 \) and \(f_0 < x_0 \); then \(x_i \equiv 0 \) and, moreover, if \(x' \) is the image of \(x \) under any \(L \in G_\rho \), then \(x'_i > 0 \) and \(x'_i \equiv 0 \) for \(i = 1, \ldots, \rho \).*

Since \(f = (0; 0^01^1 - 1) \) is a proper \(f \) of \(f_0 = 0 < x_0 \) and \((fx) \equiv 0 \), it follows that \(x_i \equiv 0 \). By Theorem 4, \((fx) \equiv 0 \) for all proper \(f \), \(p = d = 0 \) of \(f_0 \equiv x_0 \). Then \((fx) \equiv 0 \) for all proper \(f \). These characteristics \(f \) are simply permuted by any \(L \in G_\rho \). Thus if \(x' = L(x) \), it follows that \((fx') \equiv 0 \) for all proper \(f \). Since these include \((0; 0^01^1 - 1)\), it follows as before that \(x'_i \equiv 0 \). Theorem 2 asserts that \(x'_i > 0 \).

The following important result is now easily established:

Theorem 6. *Let \(c \) be a solution of \((1)\) for \(p = 0, d = 2, c_0 > 0 \) such that \((fc) \equiv 0 \) for all proper \(f \) of \(p = d = 0 \) and \(f_0 < c_0 \), then \(c \) is the characteristic of a homaloidal net.*

As before, \(c_i \equiv 0 \) and it is known \([3]\) that in such a case \(c_0 - c_1 - c_2 - c_3 < 0 \) if \(c_1, c_2, c_3 \) are the greatest of the numbers \(c_i \) and \(c_0 > 1 \). Thus
under A_{123}, $c \rightarrow c'$ of $c_0' < c_0$ and by Theorem 5, $c_i' \geq 0, i = 1, 2, \cdots, p$. Thus this reduction may be continued until $c_i'' = 1$, in which case $c'' = (1; 0, \cdots, 0)$. Under the given hypotheses, c is then the image of $(1; 0, \cdots, 0)$ under some $L \subseteq G$, and must be proper.

This result has been conjectured much earlier and indeed was proved [4] by the writer, but the proof given on that occasion was quite elusive and unsatisfactory. Fragmentary results indicate that Theorem 5 has other important applications to cases where a generalization of Noether’s inequality is possible. It would be desirable to avoid the restriction $p + d > 0$. It is possible that Theorem 5 might still be true if one removed this restriction and added at the end of the theorem “or else x' is of the type $(0; 0, \cdots, 0, -1)$.”

References

University of Texas