Reciprocals of $J$-matrices

Author:
H. S. Wall

Journal:
Bull. Amer. Math. Soc. **52** (1946), 680-685

DOI:
https://doi.org/10.1090/S0002-9904-1946-08628-0

MathSciNet review:
0017396

Full-text PDF

References | Additional Information

**1.**J. J. Dennis and H. S. Wall,*The limit-circle case for a positive definite J-fraction*, Duke Math. J. vol. 12 (1945) pp. 255-273. MR**13436****2.**Ernst Hellinger,*Zur Stieltjesschen Kettenbruchtheorie*, Math. Ann.**86**(1922), no. 1-2, 18–29 (German). MR**1512075**, https://doi.org/10.1007/BF01458568**3.**E. D. Hellinger and H. S. Wall,*Contributions to the analytic theory of continued fractions and infinite matrices*, Ann. of Math. (2) vol. 44 (1943) pp. 103-127. MR**8102****4.**H. S. Wall and Marion Wetzel,*Contributions to the analytic theory of J-fractions*, Trans. Amer. Math. Soc. vol. 55 (1944) pp. 373-392. MR**11339****5.**H. S. Wall and Marion Wetzel,*Quadratic forms and convergence regions for continued fractions*, Duke Math. J. vol. 11 (1944) pp. 89-102. MR**11340**

Additional Information

DOI:
https://doi.org/10.1090/S0002-9904-1946-08628-0