A note on the area of a nonparametric surface

Author:
Harry D. Huskey

Journal:
Bull. Amer. Math. Soc. **52** (1946), 720-726

DOI:
https://doi.org/10.1090/S0002-9904-1946-08641-3

MathSciNet review:
0018220

Full-text PDF

References | Additional Information

**1.**A. S. Besicovitch,*On the definition of the area of a surface by means of inscribed polyhedra*,J. London Math. Soc. vol. 19 (1944) pp. 138-141. MR**14416****2.**H. D. Huskey,*Contributions to the problem of Geöcze*,Duke Math. J. vol. 10 (1943) pp. 249-257. MR**8426****3.**H. D. Huskey,*Further contributions to the problem of Geöcze*,Duke Math. J. vol. 11 (1944) pp. 333-339. MR**10612****4.**B. Jessen,*On the approximation of Lebesgue integrals by Riemann sums*,Ann. of Math. vol. 35 (1934) pp. 248-251. MR**1503159****5.**T. Radó,*Some remarks on the problem of Geöcze*,Duke Math. J. vol. 11 (1944) pp. 497-506. MR**11116****6.**T. Radó and P. Reichelderfer,*Convergence in length and convergence in area*, Duke Math. J. vol. 9 (1942) pp. 527-565. MR**7041****7.**P. Reichelderfer and L. Ringenberg,*The extension of rectangle functions*,Duke Math. J. vol. 8 (1941) pp. 231-242. MR**4876****8.**S. Saks,*Theory of the integral*,Warsaw, 1935.**9.**L. C. Young,*An expression connected with the area of a surface z = F(x, y)*,Duke Math. J. vol. 11 (1944) pp. 43-57. MR**11114**

Additional Information

DOI:
https://doi.org/10.1090/S0002-9904-1946-08641-3