A note on the area of a nonparametric surface

Author:
Harry D. Huskey

Journal:
Bull. Amer. Math. Soc. **52** (1946), 720-726

DOI:
https://doi.org/10.1090/S0002-9904-1946-08641-3

MathSciNet review:
0018220

Full-text PDF Free Access

References | Additional Information

**1.**A. S. Besicovitch,*On the definition of the area of a surface by means of inscribed polyhedra*, J. London Math. Soc.**19**(1944), 138–141. MR**0014416**, https://doi.org/10.1112/jlms/19.75_Part_3.138**2.**Harry D. Huskey,*Contributions to the problem of Geöcze*, Duke Math. J.**10**(1943), 249–257. MR**0008426****3.**Harry D. Huskey,*Further contributions to the problem of Geöcze*, Duke Math. J.**11**(1944), 333–339. MR**0010612****4.**B. Jessen,*On the approximation of Lebesgue integrals by Riemann sums*, Ann. of Math. (2)**35**(1934), no. 2, 248–251. MR**1503159**, https://doi.org/10.2307/1968429**5.**Tibor Radó,*Some remarks on the problem of Geöcze*, Duke Math. J.**11**(1944), 497–506. MR**0011116****6.**T. Radó and P. Reichelderfer,*Convergence in length and convergence in area*, Duke Math. J.**9**(1942), 527–565. MR**0007041****7.**P. Reichelderfer and L. Ringenberg,*The extension of rectangle functions*, Duke Math. J.**8**(1941), 231–242. MR**0004876****8.**S. Saks,*Theory of the integral*,Warsaw, 1935.**9.**L. C. Young,*An expression connected with the area of a surface 𝑧=𝐹(𝑥,𝑦)*, Duke Math. J.**11**(1944), 43–57. MR**0011114**

Additional Information

DOI:
https://doi.org/10.1090/S0002-9904-1946-08641-3