Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

A note on the area of a nonparametric surface


Author: Harry D. Huskey
Journal: Bull. Amer. Math. Soc. 52 (1946), 720-726
DOI: https://doi.org/10.1090/S0002-9904-1946-08641-3
MathSciNet review: 0018220
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. A. S. Besicovitch, On the definition of the area of a surface by means of inscribed polyhedra,J. London Math. Soc. vol. 19 (1944) pp. 138-141. MR 14416
  • 2. H. D. Huskey, Contributions to the problem of Geöcze,Duke Math. J. vol. 10 (1943) pp. 249-257. MR 8426
  • 3. H. D. Huskey, Further contributions to the problem of Geöcze,Duke Math. J. vol. 11 (1944) pp. 333-339. MR 10612
  • 4. B. Jessen, On the approximation of Lebesgue integrals by Riemann sums,Ann. of Math. vol. 35 (1934) pp. 248-251. MR 1503159
  • 5. T. Radó, Some remarks on the problem of Geöcze,Duke Math. J. vol. 11 (1944) pp. 497-506. MR 11116
  • 6. T. Radó and P. Reichelderfer, Convergence in length and convergence in area, Duke Math. J. vol. 9 (1942) pp. 527-565. MR 7041
  • 7. P. Reichelderfer and L. Ringenberg, The extension of rectangle functions,Duke Math. J. vol. 8 (1941) pp. 231-242. MR 4876
  • 8. S. Saks, Theory of the integral,Warsaw, 1935.
  • 9. L. C. Young, An expression connected with the area of a surface z = F(x, y),Duke Math. J. vol. 11 (1944) pp. 43-57. MR 11114


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1946-08641-3

American Mathematical Society