THE SPACE L^∞ AND CONVEX TOPOLOGICAL RINGS

RICHARD ARENS

1. Introduction. The motive for investigating the class L^∞ of functions belonging to all L^p-classes has no measure-theoretic origin: it was our desire to discover whether or not in every convex metric ring R one could find a system $\{U\}$ of convex neighborhoods of 0 having the property that $f, g \in U$ implies $fg \in U$. We show here that L^∞ has no proper convex open set U containing 0 and satisfying the relation $UU \subseteq U$, thus supplying the desired counter-example.

The significance of neighborhood systems of the type $\{U\}$ described above is made somewhat clearer by a proof that they insure the existence and continuity of entire functions (for example, the exponential function) on the topological ring R.

Such neighborhood systems $\{U\}$ are always present in rings of continuous real-valued functions over any space, provided that convergence means uniform convergence on compact sets.

We also consider the relation of L^∞, L^∞, and the L^p-classes, since L^∞ does not seem ever to have been discussed as a topological and algebraic entity.

2. Notation and elementary facts. Let us consider measurable functions defined on $[0, 1]$. For $p \geq 1$ we shall consistently employ the usual notation

Received by the editors June 26, 1946.

1 More precisely, metrizable, convex, complete topological linear algebra. For these one requires continuity in both ring operations and scalar multiplication. It will appear that L^∞ has these properties.
even when the right side is infinite.

Therefore L^p consists of all functions f for which $\|f\|_p$ is less than ∞. L^∞ evidently consists of all functions f for which $\|f\|_1, \|f\|_2, \ldots$, $\|f\|_p, \ldots$ are all finite.

Because of the relation
\[\|fg\|_p \leq \|f\|_q \|g\|_r, \quad 1/p = 1/q + 1/r, \]
one has
\[\|f\|_1 \leq \|f\|_2 \leq \ldots, \]
since the measure of $[0, 1]$ is 1. Therefore we may take the sets of functions f,
\[\|f\|_p < \epsilon \]
where $p \geq 1$ and $\epsilon > 0$, as neighborhoods of 0 in L^∞. These neighborhoods are convex because
\[\|\lambda f + \mu g\|_p \leq \lambda \|f\|_p + \mu \|g\|_p < \epsilon \]
when $\lambda, \mu \geq 0$, $\lambda + \mu = 1$, and $\|f\|_p, \|g\|_p < \epsilon$. Therefore addition is continuous in L^∞ and, by relation (H), multiplication is also.

Multiplication is not generally possible in L^p.

Now the inequalities above imply that the limit
\[\lim_{p \to \infty} \|f\|_p = \|f\|_\infty \]
always exists. (It may be infinite.) Those f's for which $\|f\|_\infty$ is finite form a set usually called L^∞, and $\|f\|_\infty$ is taken as a norm in L^∞. We shall employ the known fact that $\|f\|_\infty$ is also the least number h such that $|f(x)| > h$ only on a set of measure zero.

Multiplication in L^∞ is continuous, since
\[\|fg\|_\infty \leq \|f\|_\infty \|g\|_\infty, \]
from which it follows that if U is any sphere about 0, contained in the unit sphere of L^∞, then $UU \subseteq U$.

3. The relation of L^∞, L^∞, and L^p. These spaces are related by successive proper inclusion.

Theorem 1. $L^\infty \subseteq L^\infty \subseteq L^p$ but $L^\infty \neq L^\infty \neq L^p$. The identity mappings

\[\text{Cf. E. J. McShane, Integration, Princeton, 1944, for most of the facts which we assume. A formula equivalent to (H) appears on p. 186.} \]
\(L^\infty \to L^\infty \to L^p\) are continuous, but their inverses are not. \(L^\infty\) is dense in \(L^u\), and \(L^u\) is dense in each \(L^p\).

Proof. The inclusions and the continuity of the mappings are obvious.

If we define \(l(x) = |\log x|\), then \(l\) does not belong to \(L^\infty\). Since \(||l||_p = (p!)^{1/p}\), \(l \in L^p\) for each \(p \geq 1\), and hence \(l \in L^u\). Thus \(L^u \neq L^\infty\).

Similarly, the function with values \(x^{-1/2p}\) belongs to \(L^p\), but not to \(L^{2p}\), and hence not to \(L^u\).

Now let \(l_n(x) = n^{-1}|\log x|\) or \(n\), whichever is the smaller. Then \(||l_n - 0||_p < n^{-1}||l||_p\), which tends to zero as \(n \to \infty\); but \(||l_n - 0||_\infty = n\), \(n \to \infty\). Thus the inverse of the mapping \(L^\infty \to L^u\) is not continuous.

A similar process applied to the function \(x^{-1/2p}\) yields a sequence which converges to zero in \(L^p\) but not in \(L^{2p}\), and thus not in \(L^u\).

Finally, suppose \(f \in L^u\) be given. Define

\[
f_n(x) = \begin{cases}
-n & \text{when } f(x) < -n, \\
f(x) & \text{when } -n \leq f(x) \leq n, \\
n & \text{when } n < f(x).
\end{cases}
\]

Then \(f_n \to f\) in each \(L^p\) and hence in \(L^u\). Since the \(f_n\) are taken from \(L^\infty\) the latter is dense in \(L^u\) and in each \(L^p\), which establishes the third sentence of the theorem.

\(L^u\) can be metrized, so as to be complete, by

\[
(f, g) = \sum_{p=1}^{\infty} 2^{-p} \frac{||f - g||_p}{1 + ||f - g||_p}.
\]

4. **Multiplication in \(L^u\).** By relation (H), this is continuous. The following theorem shows the divergence between its properties and those of normed rings.

Theorem 2. \(L^u\) is a convex metric commutative ring with the property that if \(U\) is a convex open set in \(L^u\) containing 0, and if \(UU \subset U\), then \(U\) coincides with the whole space \(L^u\).

Proof. There exists a \(p \geq 1\) and an \(\varepsilon > 0\) such that \(||f||_p \leq \varepsilon\) implies \(f \in U\). Therefore a function \(f\) having values not greater than \(h\) on a set of measure not greater than \((\varepsilon/h)^p\), and vanishing elsewhere, must lie in \(U\), together with all its powers \(f^2, f^3, \ldots\).

Let \(h = 2\), and set \(m = (\varepsilon/2)^p\), for brevity.

Consider any function \(g\) which has the value \(b\) on a set \(S\) of measure \(a\), and vanishes elsewhere. Suppose \(k\) is any integer such that \(a \leq mk\). Select an integer \(n\) such that \(bk \leq 2^n\). Now we can cover \(S\) by \(k\) nonoverlapping subsets of measure not greater than \(m\) and define
functions f_1, \cdots, f_k, where f_i has the value $(bk)^{1/n}$ on the ith subset of S, and vanishes elsewhere. Thus $f_1, \cdots, f_k \in U$, and also $f_1^n, \cdots, f_k^n \in U$. Since U is convex

$$g = \frac{1}{k} f_1^n + \cdots + \frac{1}{k} f_k^n$$

must belong to U.

Now any function g' assuming only a finite number of values is a linear combination, with positive constants whose sum is 1, of such functions as g. Therefore these functions lie in U.

Since these functions g' are known to be dense in L^∞ and thus in L^ω, we have U a dense, open convex set in L. Thus $U = L^\omega$.

COROLLARY. The topology assigned to L^ω cannot be defined by any norm.

5. **Entire functions in rings.** Of course Theorem 2 shows more about L^ω than is needed for a counter-example to the proposition mentioned in the introduction, as will appear from the following theorem, and the fact that $e^{1/\log x} = 1/x$ is not summable, while $|\log x|$, as we have seen, lies in L^ω.

THEOREM 3. If R is a complete topological ring with a complete system $\{U\}$ of convex neighborhoods of zero each satisfying $UU \subset U$, and

$$P(z) = a_0 + a_1 z + a_2 z^2 + \cdots$$

is a power series representing an entire function, then, for each $f \in R$,

$$P(f) = a_0 + a_1 f + a_2 f^2 + \cdots$$

converges, and P is a continuous operation on R into itself.

In particular, for the exponential function, if U is convex, contains zero, and $UU \subset U$, then

$$e^U \subset 1 + 2U.$$

PROOF. Let us first show that $P(f)$ converges. Therefore, suppose U is any neighborhood of the system $\{U\}$. Let $f \in R$.

Then for some $t > 0$, $tf \in U$. Hence $(tf)^2, (tf)^3, \cdots$ will all lie in U. Further, let us find m_0 so large that for $m \geq m_0$

$$|a_m t^{-m}| + |a_{m+1} t^{-m-1}| + \cdots$$

is less than 1. Then, since U is convex, we can deduce that for $n > m > m_0$,

$$a_m t^{-m} (tf)^m + \cdots + a_n t^{-n} (tf)^n$$
or its equivalent

\[a_m f^m + \cdots + a_n f^n \]

must lie in \(U \).

Since \(R \) is assumed complete, \(P(f) \) converges to a limit.

The continuity of \(P \) can be proved as follows:

\[
D = P(f + h) - P(f) = \sum_{n=0}^{\infty} g_{n+1} h_{n+1}
\]

where

\[
g_n = (f + h)^{n+1} - f^{n+1}.
\]

Let \(U \) be a neighborhood of the system \(\{ U \} \), and suppose \(f/t \in U \) where \(0 < t < \infty \). Select a real number \(a \),

\[
a > |a_1| (t + 1) + |a_2| (t + 1)^2 + \cdots, \quad a \geq 1,
\]

and require \(h \) to be so close to zero that \(ah \in U \).

There is no point in writing down the expansion of \(g_n \) since terms cannot be collected when \(R \) is not commutative. However, each term will contain \(h \), and if \(g_n \) is written as a sum of products of powers of \(f/t \) and \(h \), the coefficients will add up to \((t+1)^n - t^n \).

Since \(f/t \) and \(ah \) lie in \(U \), and \(UU \subseteq U \), we have

\[
h_n = (t + 1)^{-n} a g_n \in U,
\]

where, before dividing, we have replaced \((t+1)^n - t^n \) by \((t+1)^n\). Now \(D \) is a linear combination of \(h_1, h_2, \cdots \) with coefficients whose absolute values add up to less than \(1 \), and since \(U \) is convex we conclude \(D \subseteq U \).

Therefore \(P \) is continuous at \(f \).

Institute for Advanced Study