ON THE INTERIOR OF THE CONVEX HULL OF
A EUCLIDEAN SET

WILLIAM GUSTIN

In this note we shall prove for each positive integer \(n \) the following theorem \(\Delta_n \) concerning convex sets in an \(n \)-dimensional euclidean space.

Theorem \(\Delta_n \). Any point interior to the convex hull of a set \(E \) in an \(n \)-dimensional euclidean space is interior to the convex hull of some subset of \(E \) containing at most 2\(n \) points.

This theorem is similar to the well known result that any point in the convex hull of a set \(E \) in an \(n \)-dimensional euclidean space lies in the convex hull of some subset of \(E \) containing at most \(n+1 \) points \([1, 2]\).\(^1\) In these theorems the set \(E \) is an arbitrary set in the space. The convex hull of \(E \), denoted by \(H(E) \), is the set product of all convex sets in the space which contain \(E \).

A euclidean subspace of dimension \(n-1 \) in an \(n \)-dimensional euclidean space will be called a plane. Every plane in an \(n \)-dimensional euclidean space separates its complement in the space into two convex open sets, called open half-spaces, whose closures are convex closed sets, called closed half-spaces. If each of the two open half-spaces bounded by a plane \(L \) intersects a given set \(E \), then \(L \) is said to be a separating plane of \(E \); otherwise \(L \) is said to be a nonseparating plane of \(E \).

In order to prove our sequence of theorems we shall make use of the following result: A point \(i \) is interior to the convex hull of a set \(E \) in an \(n \)-dimensional euclidean space if and only if every plane through \(i \) is a separating plane of \(E \) \([1]\).

We prove our sequence of theorems by induction. The proof of Theorem \(\Delta_1 \) is trivial and will be omitted. Now suppose that Theorem \(\Delta_{n-1} \) is true for an integer \(n > 1 \). We shall show that Theorem \(\Delta_n \) is also true. To this end let \(i \) be a point interior to the convex hull of a set \(E \) in an \(n \)-dimensional euclidean space. We are to demonstrate that \(i \) is interior to the convex hull of some subset \(P \) of \(E \) containing at most \(2n \) points.

First we show that \(i \) is interior to the convex hull of some finite subset \(Q \) of \(E \). Since \(i \) is interior to \(H(E) \), it is interior to a simplex

\(^1\) Numbers in brackets refer to the references cited at the end of the paper.

Received by the editors September 19, 1946, and, in revised form, November 16, 1946.
lying in $H(E)$. Consider the $n+1$ vertices q_k ($k=1, \ldots, n+1$) of such a simplex. The vertex q_k lies in $H(E)$ and hence, according to the previously mentioned result of Carathéodory and Steinitz, lies in the convex hull of some subset Q_k of E containing at most $n+1$ points. The set $Q=\sum_k Q_k$ is then a finite subset of E containing at most $(n+1)^2$ points. Evidently the convex hull of this set contains the simplex with vertices q_k and hence contains the point i in its interior.\footnote{That i is interior to the convex hull of some finite subset of E may also be proved by the Heine-Borel theorem. I am indebted to the referee for the above proof.}

Since Q is finite, there exists a subset P of Q which contains the point i in the interior of its convex hull and which is irreducible with respect to this property. Let p be a definite point of P. Then i is not an interior point of $H(P-p)$, so some plane L through i is a non-separating plane of $P-p$. Let D be that one of the two open half-spaces bounded by L which is disjoint with $P-p$ and let D' be the other open half-space. Thus $P-p$ lies in the closed half-space $\overline{D'}$ complementary to D.

Since i is an interior point of the convex hull of P, the open half-space D contains a point of P. This point must be p, for D contains no point of $P-p$. Similarly the open half-space D' contains a point p' of P. We shall use this point p' later in the proof.

Consider an arbitrary point x of the closed half-space $\overline{D'}$. Since p lies in the complementary open half-space D, the line segment $H(p+x)$ intersects the boundary L of D in exactly one point which we denote by $\phi(x)$. Thus $\phi(x)$ is the projection of x from p onto L.

The projection ϕ is 1-1 over the subset $P-p$ of the closed half-space $\overline{D'}$. For suppose, to the contrary, that some two points p_1 and p_2 of $P-p$ project into the same point of L. The three points p, p_1, and p_2 are then collinear. Now p does not lie between the other two points, else the open half-space D containing p would contain at least one of these other two points. We may then assume p_1 and p_2 to be so labeled that a linear order of the three points is p, p_1, p_2. Therefore

$$p_1 \subset H(p+p_2) \subset H(P-p),$$

so the sets $H(P-p_1)$ and $H(P)$ are identical. The point i is then interior to $H(P-p_1)$ in contradiction to the irreducibility of P.

The projection of the convex hull of a set is the convex hull of the projection of that set, and the projection of an interior point of a convex set is an interior point of the projection of that set [3]. Therefore the point $\phi(i) = i$ is an interior point of the set $\phi(H(P-p)) = H(\phi(P-p))$ in the euclidean subspace L of dimension $n-1$. Ac-
according to Theorem \(\Delta_{n-1} \) the point \(i \) is an interior point in \(L \) of the convex hull of some subset \(P_L \) of \(\phi(P - \rho) \) containing at most \(2n - 2 \) points. Define

\[
P^* = \rho + P\phi^{-1}(P_L) + \rho'.
\]

Since the projection \(\phi \) is 1-1 over \(P - \rho \), the set \(P\phi^{-1}(P_L) \) is a subset of \(P \) containing at most \(2n - 2 \) points. Therefore \(P^* \) is a subset of \(P \) containing at most \(2n \) points.

We shall show that \(i \) is interior to \(H(P^*) \). First we notice that the coplanar set \(P_L \) lies in \(H(P^*) \). For, if \(x \) is an arbitrary point of \(P\phi^{-1}(P_L) \), then

\[
\phi(x) \subset H(\rho + x) \subset H(P^*),
\]

since both \(\rho \) and \(x \) lie in \(H(P^*) \). Now consider the pyramid \(H(\rho + P_L) \) whose apex \(\rho \) lies in \(D \) and whose base \(H(P_L) \) lies in \(L \). The point \(i \) is an interior point in \(L \) of the base \(H(P_L) \) of this pyramid, so some closed hemisphere \(A \) with center \(i \) and base on \(L \) lies in \(H(\rho + P_L) \).

Similarly, some closed hemisphere \(A' \) with center \(i \) and base on \(L \) lies in the pyramid \(H(\rho' + P_L) \). Evidently there exists a sphere \(I \) with center \(i \) such that \(I \subset A + A' \subset H(\rho + P_L) + H(\rho' + P_L) \subset H(P^*) \). The point \(i \) is then interior to the convex hull of the subset \(P^* \) of \(P \). From the irreducibility of \(P \) it follows that \(P^* = P \). Therefore \(P \) contains at most \(2n \) points.

Thus for every integer \(n > 1 \), Theorem \(\Delta_{n-1} \) implies Theorem \(\Delta_n \). Since Theorem \(\Delta_1 \) is true, we conclude by induction that Theorem \(\Delta_n \) is true for each positive integer \(n \).

The following example shows that the number \(2n \) in Theorem \(\Delta_n \) cannot be improved. Let \(i \) be the zero point of an \(n \)-dimensional vector space. Choose any \(n \) linearly independent and hence nonzero points in this space. Let \(E \) be the set consisting of these points and their vector negatives; \(E \) then contains \(2n \) points. It is easy to show that the zero point \(i \) is interior to the convex hull of \(E \) but is not interior to the convex hull of any proper subset of \(E \).

References