of Lemma 3 to obtain suitable θ's for groups of the form $Z_1 \times Z_2 \times Z_3$ where Z_i are cyclic of order 2^{n_i}. However, it should be noted that if $G \cong G_1 \times G_2$, a one-to-one mapping θ of G upon G may be defined by

$$\theta[(x, y)] = [\theta_1(x), \theta_2(y)]$$

where θ_1 and θ_2 are one-to-one mappings of G_1 upon G_1 and G_2 upon G_2 respectively. Moreover θ satisfies the relationship $O(\eta) \supseteq O(\eta_1) \cdot O(\eta_2)$. Thus if $O(\eta_1) = n(G_1)$, $O(\eta_2) = n(G_2)$ we would have $O(\eta) = n(G_1 \times G_2)$ and θ is represented explicitly in terms of θ_1 and θ_2.

UNIVERSITY OF WISCONSIN

ON RINGS WHOSE ASSOCIATED LIE RINGS ARE NILPOTENT

S. A. JENNINGS

1. Introduction. With any ring R we may associate a Lie ring (R), by combining the elements of R under addition and commutation, where the commutator $x \circ y$ of two elements $x, y \in R$ is defined by

$$x \circ y = xy - yx.$$

We call (R) the Lie ring associated with R, and denote it by \mathcal{R}. The question of how far the properties of \mathcal{R} determine those of R is of considerable interest, and has been studied extensively for the case when R is an algebra, but little is known of the situation in general. In an earlier paper the author investigated the effect of the nilpotency of \mathcal{R} upon the structure of R if R contains a nilpotent ideal N such that R/N is commutative.\(^1\) In the present note we prove that, for an arbitrary ring R, the nilpotency of \mathcal{R} implies that the commutators of R of the form $x \circ y$ generate a nil-ideal, while the commutators of R of the form $(x \circ y) \circ z$ generate a nilpotent ideal (cf. §3). If R is finitely generated, and \mathcal{R} is nilpotent then the ideal generated by the commutators $x \circ y$ is also nilpotent (cf. §4).

2. A lemma on L-nilpotent rings. We recall that the Lie ring \mathcal{R} is said to be nilpotent of class γ if we have

where $\mathfrak{R}_k = [\mathfrak{R}_{k-1}, \mathfrak{R}]$ is the Lie ideal of \mathfrak{R} generated by all elements of the form $x \circ y$ with $x \in \mathfrak{R}$ and $y \in \mathfrak{R}_{k-1}$. If R is a ring whose associated Lie ring is nilpotent of class γ then we shall say that R is L-nilpotent of class γ. It is well known that the lower central chain (1) has the property $[\mathfrak{R}_\lambda, \mathfrak{R}_\mu] \subseteq \mathfrak{R}_{\lambda+\mu}$ and hence in particular

$$[\mathfrak{R}_\lambda, \mathfrak{R}_\lambda] = 0 \quad \text{if } 2\lambda > \gamma.$$

We prove the following lemma.

Lemma 1. Let R be an L-nilpotent ring of class γ. If $c \in \mathfrak{R}_{\gamma-1}$ and if x, y are arbitrary elements of R then

$$(c \circ x)(c \circ y) = 0,$$

and in particular

$$(c \circ x)^2 = 0.$$

If $c_1, c_2 \in \mathfrak{R}_{\gamma-1}$ and $c_1 \circ c_2 = 0$ then for arbitrary $x, y \in R$

$$(c_1 \circ x)(c_2 \circ y) = 0.$$

Proof. Consider the identity

$$(a \circ b \circ y \circ x) = (a \circ b \circ x) y + (a \circ b)(y \circ x) + b(a \circ y \circ x) + (b \circ x)(a \circ y).$$

Setting $a = b = c$ we have, since $[\mathfrak{R}_{\gamma-1}, \mathfrak{R}, \mathfrak{R}] = 0$,

$$0 = (c \circ x)(c \circ y)$$

and, if $x = y$,

$$0 = (c \circ x)^2,$$

while if $a = c_2$, $b = c_1$ and $c_1 \circ c_2 = 0$

$$0 = (c_1 \circ x)(c_2 \circ y),$$

which proves the lemma.

3. **Ideals generated by the lower central chain of \mathfrak{R}.** In what follows, R will be an L-nilpotent ring, and we denote the lower central chain of \mathfrak{R} as in (1). Let \mathfrak{R}_k, $k = 1, 2, \cdots, \gamma$, be the subring of R generated by the elements of \mathfrak{R}_k, and let $\overline{\mathfrak{R}}_k$ be the ideal of R generated by \mathfrak{R}_k. It is known\(^8\) that every element of $\overline{\mathfrak{R}}_k$ may be written in the form $u_k + v_k$, where $u_k \in \mathfrak{R}_k$ and $v_k \in RR_k$, and since R_γ is in the centre of R, $\overline{\mathfrak{R}}_\gamma$ is a nilpotent or nil-ring whenever R_γ is.

\(^8\) Ibid. Lemma 5.3.
Let $R^* = R/\overline{R}_\gamma$; then the natural homomorphism of R upon R^* induces a homomorphism of \mathfrak{R} upon \mathfrak{R}^*, where \mathfrak{R}^* is the Lie ring associated with R^*, such that $\overline{R}_k \rightarrow \overline{R}_{k^*}$. Hence in particular $\mathfrak{R}_{\gamma}^* = 0$ and R^* is an L-nilpotent ring of class not greater than $\gamma - 1$.

Our principal theorem is the following:

Theorem 1. If R is an L-nilpotent ring, then the commutators of R generate a nil-ideal of R, that is, \overline{R}_2 is a nil-ideal. The elements of R of the form $(x \circ y) \circ z$ generate a nilpotent ideal of R, that is, \overline{R}_3 is nilpotent.

Proof. Consider first \overline{R}_γ: every element of \overline{R}_γ can be written as a finite sum of finite products of elements of \mathfrak{R}_γ and since $\mathfrak{R}_\gamma = [\mathfrak{R}_{\gamma - 1}, \mathfrak{R}]$, every element of \mathfrak{R}_γ can be written as a finite sum of elements of the form $c \circ x$, where $c \in \mathfrak{R}_{\gamma - 1}$ and $x \in R$. Hence every element of \overline{R}_γ is a sum of products of elements of the form $c \circ x$. Now by Lemma 1 the square of every element of the form $c \circ x$ is zero, and these elements are all in the centre of R. Hence if

$$ y = p_1 + p_2 + \cdots + p_n $$

is an element of \overline{R}_γ, where the p_k are products of elements of the form $c \circ x$, we have $p_k^2 = 0$ and therefore, since these products p_k are all in the centre of R, we have $y^{n+1} = 0$, which proves that \overline{R}_γ, and hence \overline{R}_γ, is a nil-ring. Now if $\gamma > 2$ we have, from (2)

$$ [\mathfrak{R}_{\gamma - 1}, \mathfrak{R}_{\gamma - 1}] = 0 $$

and hence $c_1 \circ c_2 = 0$ for all $c_1, c_2 \in \mathfrak{R}_{\gamma - 1}$. From Lemma 1 it follows that $p_1p_2 = 0$ in the representation of y above, and hence

$$ \overline{R}_\gamma^3 = 0, \quad \gamma > 2. $$

The proof of the theorem now proceeds easily by induction upon γ, since by the above it is true when $\gamma = 2$, that is whenever $\overline{R}_2 = \overline{R}_\gamma$, $\overline{R}_3 = 0$. We suppose, therefore, that the theorem holds for rings of class less than γ, and hence in particular for $R^* = R/\overline{R}_\gamma$. Then if $c \in \overline{R}_2$ and $c \rightarrow c^*$ in the homomorphism of R upon R^* we have

$$ c^{*\sigma'} = 0, \quad \sigma' \text{ some integer}, $$

by our induction, and hence

$$ c^* \in \overline{R}_\gamma \quad \text{for all } c \in \overline{R}_2. $$

Since $\overline{R}_\gamma^3 = 0$ whenever $\gamma > 2$ we have

$$ c^\sigma = 0, \quad \text{where } \sigma = 2\sigma', $$

by our induction.
and it follows that \mathcal{R}_s is a nil-ring. Further, since \mathcal{R}_s^* is nilpotent by our induction,

$$\mathcal{R}_s^{*r'} = 0$$

for some integer r' and hence

$$\mathcal{R}_s^{r'} \subseteq \mathcal{R},$$

and therefore

$$\mathcal{R}_s^\tau = 0,$$

where $\tau = 2r'$, which proves that \mathcal{R}_s is nilpotent, as required.

4. Finitely generated L-nilpotent rings. If \mathcal{R} satisfies the maximal or minimal condition for one-sided ideals, so does \mathcal{R}_s and hence \mathcal{R}_s must be nilpotent.\(^4\) We prove the following stronger result:

Theorem 2. If \mathcal{R} is a finitely generated L-nilpotent ring, then the commutators of \mathcal{R} generate a nilpotent ideal, that is, \mathcal{R}_s is nilpotent.

Proof. If \mathcal{R} is finitely generated, say by x_1, x_2, \cdots, x_d, then every element x of \mathcal{R} can be written in the form $x = p_1 + p_2 + \cdots + p_n$ where the p_k are products of the x_1, \cdots, x_d in some order. It is clearly sufficient to consider the case $\gamma = 2$, since if we show in general that $\mathcal{R}_s/\mathcal{R}_s^r$ is nilpotent, it will follow from Theorem 1 that \mathcal{R}_s has this property. Because of the identity

$$ (ab) \circ c = a(b \circ c) + (a \circ c)b $$

every element of \mathcal{R}_s can be written as a sum of products of the form

$$ \pi_r = a(x_{i_1} \circ x_{i_2})(x_{i_3} \circ x_{i_4}) \cdots (x_{i_r} \circ x_{i_r}), \quad a \in \mathcal{R}. $$

Now there are at most $d(d-1)/2$ nonzero commutators of the type $x_i \circ x_j$, and since by Lemma 1 we have

$$ (x_i \circ x_j)(x_i \circ x_k) = 0 $$

it follows that if the number of factors in any product π_r is greater than $d(d-1)/2$ this product vanishes. Hence

$$ \mathcal{R}_s^\tau = 0, \quad \tau = d(d - 1)/2 + 1 $$

and the theorem is established.

In connection with Theorem 2 it would be of interest to know if there exist L-nilpotent rings for which R_3 is not nilpotent. It would be enough to exhibit a ring R for which

$$(x \circ y) \circ z = 0$$

for all $x, y, z \in R$ and such that the subring generated by elements of the form $(x \circ y)$ is not nilpotent. The author has been unable to construct such a ring but it seems fairly safe to conjecture that such a one exists, and indeed with a countable generating set.

Since R/R_3 is commutative and R_3 is nilpotent we have at once from an earlier result of the author:

Theorem 3. A finitely generated L-nilpotent ring is of finite class.

Finally, it is clear that we have the following criterion for the nilpotency of a finitely generated nil-ring:

Theorem 4. A finitely generated nil-ring is nilpotent if and only if its associated Lie ring is nilpotent.

This last theorem may be compared with Kaplansky's result on finitely generated nil-algebras, which states that, provided the ground field has enough elements, such an algebra is nilpotent if and only if there exists a fixed integer p such that $x^p = 0$ for all elements x in the algebra. Our theorem shows that this condition may be replaced by the requirement that all commutators of a fixed weight vanish.

The University of British Columbia
