ADDITION TO MY NOTE ON SEMI-SIMPLE RINGS

OSCAR GOLDMAN

In my Bulletin note on semi-simple rings1 I made use of the following definition of the radical of a ring which I attributed to C. Chevalley: "The radical of a ring A is the intersection of the annihilators of all simple A-modules." Recently N. Jacobson has called my attention to the fact that the radical thus defined coincides with the one considered by him,2 and that Chevalley's statement can easily be shown to be equivalent with the following characterization of the radical by Jacobson:2,3 "If A is not a radical ring, then the radical of A is the intersection of all the primitive ideals contained in A.

To see the relation between the two statements, we need to make use of Jacobson's characterization of a primitive ideal as a proper ideal B such that the factor ring A/B is isomorphic with a simple ring of endomorphisms. From this it is clear that B is primitive if, and only if, B is proper and is the annihilator of a simple A-module. If the word "proper" is dropped from the definition of a primitive ideal, then the concept of primitive ideal is equivalent to that of annihilator of a simple A-module. Hence Chevalley's definition is essentially the same as Jacobson's characterization.4

PRINCETON UNIVERSITY

Received by the editors March 3, 1947.
1 A characterization of semi-simple rings, Bull. Amer. Math. Soc. vol. 52 (1946) p. 1021.
2 N. Jacobson, The radical and semi-simplicity for arbitrary rings, Amer. J. Math. vol. 67 (1945) p. 301.
4 It is to be noted that, as a result of this equivalence, Theorems I and II of my note become superfluous. See Theorems V, IX, and XXV in footnote 2 above.