A NOTE ON THE SCHMIDT-REMAK THEOREM

FRED KIOKEMEISTER

Let G be a group with operator domain Ω. We shall say that G satisfies the modified maximal condition for Ω-subgroups if the chain $H_1 \subset H_2 \subset \cdots \subset H \neq G$ is finite whenever H_1, H_2, \cdots, H are Ω-subgroups of G.

Let A_1, A_2, \cdots be a countable set of groups. The direct product of A_1, A_2, \cdots will be defined to be the set of elements (a_1, a_2, \cdots) where a_i is an element of A_i for $i = 1, 2, \cdots$, and where but a finite number of the a_i are not the identity elements of the groups in which they lie. A product in the group is defined by the usual componentwise composition of two elements. This group will have the symbol $A_1 \times A_2 \times \cdots$.

The following theorem is in a sense a generalization of the Schmidt-Remak theorem.

Theorem. Let G be a group with operator domain Ω, and let Ω contain the inner automorphisms of G. Let $G = A_1 \times A_2 \times \cdots$ where each of the Ω-subgroups A_i is directly indecomposable, and each satisfies the minimal condition and the modified maximal condition for Ω-subgroups. Then if $G = B_1 \times B_2 \times \cdots$ is a second direct product decomposition of G into indecomposable factors, the number of factors will be the same as the number of the A_i. Further the A_i may be so rearranged that $A_i \cong B_i$, and for any j

$$G = B_1 \times B_2 \times \cdots \times B_j \times A_{j+1} \times A_{j+2} \times \cdots.$$

A proof of the theorem can be based on any standard proof of the Schmidt-Remak theorem such as that given by Jacobson\(^1\) or by Zassenhaus\(^2\) with but slight changes in the two fundamental lemmas.

We state the following lemmas for a group G with operator domain Ω, and we assume that for G and Ω:

- (1) Ω contains all inner automorphisms of G.
- (2) G satisfies the minimal condition and the modified maximal condition for Ω-subgroups.
- (3) G is indecomposable into the direct product of Ω-subgroups.

LEMMA 1. Let \(\alpha \) be an \(\Omega \)-operator of \(G \). If there exists in \(G \) an element \(h \) not equal to the identity of \(G \) such that \(h^\alpha = h \), then \(\alpha \) is an automorphism of \(G \).

This lemma follows by the usual arguments. It is only necessary to note that the fixed point \(h \) is sufficient to guarantee that the union of the kernels of the operators \(\alpha, \alpha^2, \cdots \) is not \(G \), and that the modified maximal condition then yields that this union is the kernel of some \(\alpha^k \).

LEMMA 2. Let \(\alpha_1, \alpha_2, \cdots \) be addible \(\Omega \)-operators such that if \(g \) is an element of \(G \), then there exists an integer \(N(g) \) such that \(g^\alpha = e \), the identity element of \(G \), for all \(i > N(g) \). If \(\alpha = \alpha_1 + \alpha_2 + \cdots \) is an automorphism of \(G \) then, for some \(k \), \(\alpha_k \) is an automorphism of \(G \).

Let \(g \) be an element of \(G \), \(g \neq e \). Let \(\beta_1 = \alpha_1 + \alpha_2 + \cdots + \alpha_{N+1} = \alpha_N + \alpha_{N+2} + \cdots \) where \(N = N(g) \). Thus \(\alpha = \beta_1 + \beta_2 \) and \(g^{\beta_2} = e \).

We may assume that \(\alpha \) is the identity operator. Then \(g = g^\alpha = g^{\beta_1} g^{\beta_2} = g^{\beta_1} \). The group \(G \) and the operator \(\beta_1 \) satisfy the conditions of Lemma 1, and \(\beta_1 \) is an automorphism of \(G \).

Similarly let \(\gamma = \alpha_1 + \alpha_2 + \cdots + \alpha_{N-1} \). Then \(\beta_1 = \gamma + \alpha_N \). We may assume that \(\beta_1 \) is the identity operator. If \(\alpha_N \) is not an automorphism of \(G \), the kernel of \(\alpha_N \) must contain an element \(h \neq e \), since \(G \) satisfies the minimal condition. Again we may show that \(\gamma \) is an automorphism of \(G \). A repetition of this argument establishes the lemma.

By reference to Lemma 2 the cited proofs of the Schmidt-Remak theorem can be made to yield the following: To each \(B_i \) there corresponds a group \(A_{a_i} \) where \(a_i \) is a positive integral subscript such that \(\alpha_i = \alpha_j \) implies \(i = k \) and \(A_{a_i} \) is operator isomorphic with \(B_i \) for all \(i \). Further

\[
G = B_1 \times B_2 \times \cdots \times B_i \times A_{\beta_1} \times A_{\beta_2} \times \cdots
\]

where \(\beta_n \neq \alpha_i \) for any \(n \) or \(i \), and where the set of integers \(\{ \alpha_1, \alpha_2, \cdots, \alpha_i, \beta_1, \beta_2, \cdots \} \) is the set of all positive integers. Let \(A_m \) contain the element \(g \neq e \). Then for some \(M \), \(g \) is an element of the group

\[
(B_1 \times B_2 \times \cdots \times B_M) \cap (A_{\beta_1} \times A_{\beta_2} \times \cdots) = e,
\]

\(m \neq \beta_k \) for all \(k \). Thus for some \(i \), \(1 \leq i \leq M \), we have \(m = \alpha_i \), and the set of integers \(\{ \alpha_1, \alpha_2, \cdots \} \) includes all subscripts. There then exists a reordering of these subscripts such that \(\alpha_i = i \).

Mount Holyoke College