following lower bounds for \(x \) and \(\phi(x) \): (I) \(10^{458} \); (II) \(10^{588} \); (III) \(10^{400} \).

REFERENCES

UNIVERSITY OF VIRGINIA

ON THE DARBOUX TANGENTS

V. G. GROVE

1. Introduction. In a recent paper [1] Abramescu gave a metrical characterization of the cubic curve obtained by equating to zero the terms of the expansion of a surface \(S \) at an ordinary point \(O_1 \), up to and including the terms of the third order. This cubic curve is rational and its inflexions lie on the three tangents of Darboux through \(O_1 \). In this paper we give a projective characterization of such a curve, and hence a new derivation of the tangents of Darboux. By using the method employed in this characterization to the curve of intersection of the tangent plane of the surface at \(O_1 \) with \(S \), a simple characterization of the second edge of Green is found. Another application exhibits the correspondence of Moutard. Finally a new interpretation of the reciprocal of the projective normal is given in terms of the conditions of apolarity of a cubic form to a quartic form. The canonical tangent appears in a similar fashion.

Let \(S \) be referred to its asymptotic curves, and let the coordinates \((x^1, x^2, x^3, x^4)\) of the generic point \(O_1 \) of \(S \) be normalized so that they satisfy the system [2] of differential equations

\[
\begin{align*}
 x_{uu} &= \theta_u x_u + \beta x_v + px, \\
 x_{vv} &= \gamma x_u + \theta_v x_v + qx, \quad \theta = \log R.
\end{align*}
\]

(1.1)

The line \(l_1 \) joining \(O_1 \) to \(O_4 \), whose coordinates are \(x_{u_1} \), is the R-conjugate line, and the line \(l_2 \) determined by \(O_2, O_3 \), whose respective coordinates are \(x_{u_2}, x_{v_2} \), is the R-harmonic line.

If we define the local coordinates \((x_1, x_2, x_3, x_4)\) with respect to

Presented to the Society, April 26, 1947; received by the editors April 11, 1947.

\(^1\) Numbers in brackets refer to the references cited at the end of the paper.
ON THE DARBOUX TANGENTS

$O_1O_2O_3O_4$ of a point X by the expression

$$X^i = x_1x^i + x_2x^i + x_3x^i + x_4x^i,$$

and local nonhomogeneous coordinates (x, y, z) by $x = x_2/x_1$, $y = x_3/x_1$, $z = x_4/x_1$, the power series expansion [4] of S at O_1 is

$$(1.2) \quad z = xy - \frac{1}{3}(\beta x^3 + \gamma y^3) + \frac{1}{12}F_4(x, y) + \cdots,$$

wherein

$$(1.3) \quad F_4(x, y) = (2\beta_0 - \beta_0)x^4 - 4(\beta_0 + \beta_0)x^2y - 6\theta_0x^2y^2$$

$$- 4(\gamma_0 + \gamma_0)xy^2 + (2\gamma_0 - \gamma_0)y^4.$$

2. Characteristic points of a plane curve. Let the triangle of reference $O_1O_2O_3$ to which a plane curve C is referred be covariant to the curve or to a surface to which C bears some geometrical relation. Let the homogeneous coordinates of a point with respect to this triangle be (x_1, x_3, x_3), the nonhomogeneous coordinates being defined by the expressions $x = x_2/x_1$, $y = x_3/x_1$. The line $y = 0$ being chosen as the tangent to C at O_1, the power series expansion [4] of C at O_1 is

$$(2.1) \quad y = a_2x^2 + a_3x^3 + a_4x^4 \cdots.$$

Consider at $O_2(0, 0, 1)$ the involution whose double lines are O_1O_3, O_2O_3. Corresponding lines of this involution intersect C in points $P_1(x, y)$, $P_3(-x, y')$, $y' = a_2x^2 - a_3x^3 + a_4x^4 - \cdots$. The line P_1P_3 intersects the tangent to C at O_1 in a point whose limit T as P_1 approaches O_1 along C has coordinates

$$(2.2) \quad x_1 = a_3, \quad x_2 = -a_2, \quad x_3 = 0.$$

We shall call the point T with coordinates (2.2) the characteristic point of the second order of C at O_1 relative to $O_1O_2O_3$.

Let $O_2(\rho, 1, 0)$ be an arbitrary point on the tangent to C at O_1, but distinct from O_1. The transformation from the triangle $O_1O_2O_3$ to $O_1O_2O_3$ is

$$(2.3) \quad x = \frac{Ax'}{1 + \rho A x'}, \quad y = \frac{By'}{1 + \rho A x'}.$$

Under the transformation (2.3), the equation of C may be written in the form

$$y' = a_2' x'^2 + a_3' x'^3 + \cdots,$$

wherein
\[a'_2 = A^2 a_2 / B, \quad a'_3 = A^3 (a_3 - p a_2) / B. \]

Hence the characteristic point of \(C \) relative to \(O_1 O_3 O_2 \) has coordinates
\[x_1 = (a_3 - 2 p a_2), \quad x_2 = - a_2, \quad x_3 = 0 \]
referred to \(O_1 O_3 O_2 \).

More generally let the equation of \(C \) have the form
\[y = a_k x^k + a_{k+1} x^{k+1} + \cdots, \quad k \geq 2. \]

Consider through \(O_3 \) two lines forming with \(O_1 O_3, O_2 O_3 \) the constant cross ratio \(l, l \) being one of the \(k \)th roots of unity, but \(l \neq 1 \). These lines intersect \(C \) in two points \(P_1, P_2 \) determining a line which intersects the tangent to \(C \) at \(O_1 \) in a point whose limit as \(P_1 \) approaches \(O_1 \) has coordinates
\[x_1 = a_{k+1}, \quad x_2 = - a_k, \quad x_3 = 0. \]

We shall call the point \(T \) whose coordinates are (2.5) the characteristic point of the \(k \)th order of \(C \) relative to \(O_1 O_3 O_2 \).

3. The characteristic curve of \(S \). Let us consider the section \(C_x \) of the surface \(S \) by a plane \(\pi \) through the \(R \)-conjugate line \(l_1 \). Let \(\pi \) intersect the \(R \)-harmonic line \(l_2 \) in \(O_3 \). The local coordinates of \(O_3 \) are of the form \((0, \lambda, \mu, 0) \), and the local coordinates of any point \(Q \) on \(O_1 O_3 \) are \((1, \lambda \xi, \mu \xi, 0) \). The equation of \(C_x \) referred to \(O_1 O_4 \) in nonhomogeneous coordinates \((\xi, z) \) is
\[z = \lambda \mu \xi^2 - \frac{1}{3} (\beta \lambda^3 + \gamma \mu^3) \xi^3 + \frac{1}{12} F_4(\lambda, \mu) \xi^4 + \cdots. \]

From (2.2) the characteristic point \(T_x \) of \(C_x \) relative to \(O_1 O_4 \) has coordinates
\[\xi = 3 \lambda \mu / (\beta \lambda^3 + \gamma \mu^3), \quad z = 0, \]
referred to \(O_1 O_4 \), and coordinates
\[x = 3 \lambda^2 \mu / (\beta \lambda^3 + \gamma \mu^3), \quad y = 3 \lambda \mu^2 (\beta \lambda^3 + \gamma \mu^3), \quad z = 0 \]
referred to \(O_1 O_3 O_4 O_4 \). The locus of \(T_x \) as \(\pi \) rotates about \(l_1 \) is the covariant rational cubic curve \(\Gamma_3 \) whose equation is
\[3 x y - (\beta x^3 + \gamma y^3) = 0, \quad z = 0. \]

We shall call this cubic the characteristic curve of \(S \) relative to \(l_1, l_2 \). The nodal tangents of \(\Gamma_3 \) are of course the asymptotic tangents of \(S \) at \(O_1 \), and the inflexions lie on the tangents of Darboux. The \(R \)-harmonic line
is the flex-ray of Γ_3.

From (3.3) it follows that the only sections of S through the R-conjugate line whose characteristic points relative to $O_1O_3O_2$ lie on the R-harmonic line are those through the tangents of Darboux.

Another characterization of the cubic Γ_3 may be found in the following manner. The osculating conic of the section C_τ has the equation [4]

$$
\lambda^3 \mu^3 \left(z - \lambda \mu \xi^2 \right) + \frac{1}{3} \lambda^3 \mu^3 \left(\beta \lambda^3 + \gamma \mu^3 \right) \xi^2
$$

$$
+ \left[\frac{1}{9} \left(\beta \lambda^3 + \gamma \mu^3 \right)^2 - \frac{1}{12} F_4(\lambda, \mu) \right] \xi^2 = 0.
$$

(3.5)

The pole of R-conjugate line with respect to this conic is the point T'_τ with coordinates

$$
\xi = -3 \lambda \mu / (\beta \lambda^3 + \gamma \mu^3), \quad \tau = 0.
$$

The harmonic conjugate of T'_τ with respect to O_1O_3 is the point T_τ defined by (3.2). Incidentally the locus of T'_τ is the cubic Γ'_3,

$$
3xy + \beta x^3 + \gamma y^3 = 0.
$$

The tangents of Darboux are thus again exhibited by means of Γ'_3.

Finally we may readily show that the polar line of the conic (3.5) intersects O_4O_2 in a point whose locus as π varies is a rational curve of order seven which intersects the R-harmonic line at its intersections with the tangents of Darboux.

4. The edges of Green. The expansions [4] of the two branches of the curve of intersection of S at O_1 with its tangent plane are

$$
y = \frac{1}{3} \beta x^2 - \frac{1}{12} (2\beta \theta_u - \beta_u)^3 + \cdots, \quad z = 0;
$$

$$
x = \frac{1}{3} \gamma y^2 - \frac{1}{12} (2\gamma \theta_v - \gamma_v)^3 + \cdots, \quad z = 0.
$$

(4.1)

The characteristic point T_u of the first of (4.1) relative to $O_1O_3O_2$ has coordinates

$$
x_1 = \frac{1}{4} \left(2\theta_u - \frac{\beta_u}{\beta} \right), \quad x_2 = 1, \quad x_3 = x_4 = 0,
$$

(4.2)

and the characteristic point T_v of the second relative to $O_1O_3O_2$ has coordinates
The line joining the harmonic conjugates of T_u and T_v with respect to O_1O_2 and O_3O_4 respectively is Green's edge of the second kind.

This edge of Green may be characterized in another way. The section of S by the plane through the R-conjugate line and the tangent to the asymptotic curve $v=\text{const.}$ has the equation

$$z = -\frac{1}{3} \beta x^3 + \frac{1}{12} (2\beta\theta_u - \beta_u) x^4 + \cdots.$$

The characteristic point of the third order of the curve (4.4) relative to $O_1O_4O_2$, is found from (2.5) to have coordinates given by (4.2); by interchanging the roles of the asymptotic tangents the point (4.3) is characterized. The second edge of Green is therefore given another characterization.

Consider on the tangent to the section (3.1) C_r of S the point $O_r (\rho, 2\lambda, 2\mu, 0)$. From (2.4) we find readily that the characteristic point T of C_r relative to $O_1O_4O_2'$ has coordinates

$$x_1 = \rho \lambda \mu + \frac{1}{3} (\beta \lambda^3 + \gamma \mu^3), \quad x_2 = \lambda^2 \mu, \quad x_3 = \lambda \mu^2, \quad x_4 = 0.$$

The point P_r on the tangent to C_r at O_1 which with O_1 separates O_r and O_r harmonically has coordinates $(\rho, \lambda, \mu, 0)$. Equations (4.4) therefore represent a cubic transformation of P_r into the characteristic point of C_r relative to $O_1O_4O_2'$. The polar plane of the point (4.5) with respect to any quadric of Darboux,

$$x_2x_3 - x_1x_4 + k x_4^2 = 0,$$

has coordinates

$$\xi_1 = 0, \quad \xi_2 = \lambda \mu^2, \quad \xi_3 = \lambda^2 \mu, \quad \xi_4 = -\rho \lambda \mu - \frac{1}{3} (\beta \lambda^3 + \gamma \mu^3).$$

The correspondence (4.6) between P_r and the polar plane of the characteristic point of C_r relative to $O_1O_4O_2'$ is the correspondence of Moutard ($k = -1/3$). We have previously [3] given a different derivation of this correspondence.

5. The projective normal. The surface S' whose equation is

$$z = xy - \frac{1}{3} (\beta x^3 + \gamma y^3).$$
has a unode at O_4, the plane $O_2O_3O_4$ as uniplane, and has contact of the third order with S at O_1; hence S' is completely determined. The projection on their common tangent plane at O_1 of the curve of intersection of S and S' has a quadruple point at O_1, the quadruple tangents being given by

\begin{equation}
F_4(x, y) = 0
\end{equation}

where $F_4(x, y)$ is defined by (1.3). The lines (5.2) intersect the R-harmonic line in four points F_i, and the Segre tangents intersect this line in three points S_i. It is easy to verify that \textbf{the points S_i are apolar to F_i if and only if the R-harmonic line is the reciprocal of the projective normal.} The projective normal is therefore geometrically determined by reciprocation with respect to the quadrics of Darboux.

Finally let the lines l_1, l_2 be the projective normal and its reciprocal; then it readily follows that the polar of the form $\beta x^3 + \gamma y^3$ with respect to $F_4(x, y)$ is

\begin{equation}
\phi x - \psi y
\end{equation}

wherein $\phi = \partial \log (\beta \gamma^3)/\partial u$, $\psi = \partial \log (\beta \gamma^3)/\partial v$. The form (5.3) equated to zero is seen to be \textit{the equation of the canonical tangent}.

\textbf{References}

4. E. P. Lane, \textit{A treatise on projective differential geometry}, The University of Chicago Press, 1942.