Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Global theorems in Riemannian geometry


Author: C. B. Allendoerfer
Journal: Bull. Amer. Math. Soc. 54 (1948), 249-259
DOI: https://doi.org/10.1090/S0002-9904-1948-08965-0
MathSciNet review: 0027171
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. C. B. Allendoerfer, Rigidity for spaces of class greater than one, Amer. J. Math, vol. 61 (1939) pp. 634-644. MR 170
  • 2. C. B. Allendoerfer and A. Weil, The Gauss-Bonnet theorem for Riemannian polyhedra, Trans. Amer. Math. Soc. vol. 53 (1943) pp. 101-129. MR 7627
  • 3. R. Beez, Zur Theorie der Krümmungmasses von Mannigfaltigkeiten höherer Ordnung, Zeitschrift für Mathematik und Physik vol. 21 (1876) pp. 373-401.
  • 4. S. Bochner, Vector fields and Ricci curvature, Bull. Amer. Math. Soc. vol. 52 (1946) pp. 776-797. MR 18022
  • 5. S. S. Chern, On the curvature integra in a Riemannian manifold, Ann. of Math, vol. 46 (1945) pp. 678-684. MR 14760
  • 6. Stefan Cohn-Vossen, Kürzeste Wege und Totalkrümmung auf Flächen, Compositio Math. 2 (1935), 69–133 (German). MR 1556908
  • 7. W. V. D. Hodge, The theory and applications of harmonic integrals, Cambridge University Press, 1941. MR 3947
  • 8. Sumner Byron Myers, Riemannian manifolds in the large, Duke Math. J. 1 (1935), no. 1, 39–49. MR 1545863, https://doi.org/10.1215/S0012-7094-35-00105-3
  • 9. Sumner Byron Myers, Connections between differential geometry and topology. I. Simply connected surfaces, Duke Math. J. 1 (1935), no. 3, 376–391. MR 1545884, https://doi.org/10.1215/S0012-7094-35-00126-0
  • 10. Sumner Byron Myers, Connections between differential geometry and topology II. Closed surfaces, Duke Math. J. 2 (1936), no. 1, 95–102. MR 1545908, https://doi.org/10.1215/S0012-7094-36-00208-9
  • 11. S. B. Myers, Riemannian manifolds with positive mean curvature, Duke Math. J. vol. 8 (1941) pp. 401-404. MR 4518
  • 12. A. Weil, see Allendoerfer, C. B.
  • 13. H. Weyl, Über die Starrheit der Eiflächen und konvexen Polyeder, Preuss. Acad. Wiss. Sitzungsber. (1917) pp. 250-266.


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1948-08965-0

American Mathematical Society