RECURSIVE PROPERTIES OF TRANSFORMATION GROUPS. II

W. H. GOTTSCALK

The purpose of this note is to sharpen a previous result on the transmission of recursive properties of a transformation group to certain of its subgroups. [See Recursive properties of transformation groups, by W. H. Gottschalk and G. A. Hedlund, Bull. Amer. Math. Soc. vol. 52 (1946) pp. 637–641.]

Let T be a multiplicative topological group with identity e. A subset R of T is said to be relatively dense provided that $T = RK$ for some compact set K in T.

Lemma 1. If R is a relatively dense closed semi-group $(RR \subseteq R)$ in T, then R is a subgroup of T.

Proof. Suppose $r \in R$ and U is a neighborhood of e. It is sufficient to show that $r^{-1}U \cap R \neq \emptyset$. Let V be a neighborhood of e for which $VV^{-1} \subseteq U$ and let K be a compact set in T for which $T = RK$. There exists a finite collection F of right translates of V which covers K. Choose $k_0 \in K$. Now $r^{-1}k_0 = r_1k_1$ for some $r_1 \in R$ and some $k_1 \in K$. Again $r^{-1}k_1 = r_2k_2$ for some $r_2 \in R$ and some $k_2 \in K$. This may be continued. Thus there exist sequences k_0, k_1, \ldots in K and r_1, r_2, \ldots in R such that $r^{-1}k_i = r_{i+1}k_{i+1}$ ($i = 0, 1, \ldots$). Select integers m and n ($0 \leq m < n$) and an element V_0 of F such that $k_m, k_n \in V_0$. Now $r^{-1}k_mk_n^{-1} = (r^{-1}k_mk_{m+1}^{-1}) (k_{m+1}k_{m+2}^{-1}) \cdots (k_{n-1}k_n^{-1}) = r_{m+1}r_{m+2} \cdots r_r \in R$. Also $r^{-1}k_mk_n^{-1} \in r^{-1}V_0V_0^{-1} \subseteq r^{-1}VV^{-1} \subseteq r^{-1}U$. Hence $r^{-1}U \cap R \neq \emptyset$ and the proof is completed.

Now let T act as a transformation group on a topological space X. That is to say, suppose that to $x \in X$ and $t \in T$ is assigned a point, denoted xt, of X such that: (1) $xe = x$ ($x \in X$); (2) $(xt)s = x(ts)$ ($x \in X, t, s \in T$); (3) The function xt defines a continuous transformation of $X \times T$ into X. We assume for the remainder of the paper that x is a fixed point of X, T is locally compact and S is a relatively dense invariant subgroup of T. Let Σ denote the maximal subset of T for which $x\Sigma \subseteq (xS)^*$. The function xt defines a continuous transformation of $X \times T$ into X. We assume for the remainder of the paper that x is a fixed point of X, T is locally compact and S is a relatively dense invariant subgroup of T. Let Σ denote the maximal subset of T for which $x\Sigma \subseteq (xS)^*$ where the star denotes the closure operator.

Lemma 2. The set Σ is a closed subgroup of T which contains S.

Proof. Obviously $\Sigma \subseteq S$. From $x\Sigma^* \subseteq (x\Sigma)^* \subseteq (xS)^*$ we conclude that Σ is closed. By Lemma 1 it is now enough to show that Σ is a

Presented to the Society, September 2, 1947; received by the editors June 30, 1947.

381
semi-group. Suppose \(\sigma, \tau \in \Sigma \). From \(x\sigma \in (xS)^* \) it follows that \(x\sigma \tau \in (xS)^* \tau \subset (xS^r)^* \). From \(x\tau S \in (xS)^* \) it follows that \(x\tau S \subset (xS)^* S \subset (xSS)^* \subset (xS)^* \). Hence \(x\sigma \in (xS)^* \). Thus \(\sigma \tau \in \Sigma \) and the proof is completed.

Lemma 3. If \(W \) is a neighborhood of \(e \), then \(x \in (x[T - \Sigma W])^* \).

Proof. We first show that if \(t \in T - \Sigma \), then \(x \in (x\Sigma V_0)^* \) for some neighborhood \(V_0 \) of \(t \). Suppose \(t \in T - \Sigma \). Since \(t^{-1} \in \Sigma \) by Lemma 2, \(x t^{-1} \in (x \Sigma)^* \) and \(x \in (x \Sigma t)^* \). There are neighborhoods \(U \) of \(x \) and \(V \) of \(e \) such that \(V = V^{-1} \) and \(UV \cap x\Sigma t V = \emptyset \). It follows that \(U \cap x\Sigma t V = \emptyset \). Define \(V_0 = tV \).

We may assume \(W \) is open. Define \(N = K - \Sigma W \) where \(K \) is a compact set in \(T \) such that \(T = SK \). Using Lemma 2 we conclude that \(T = SK \subset S(N \cup \Sigma W) \subset S \cap S \cap W \subset \Sigma N \cup \Sigma W \). Hence \(T - \Sigma W = \Sigma N \). By the preceding paragraph, to each \(n \in N \) there corresponds a neighborhood \(V_n \) of \(n \) such that \(x \in (x\Sigma V_n)^* \). Since finitely many of the \(V_n \) cover \(N \), \(x \in (x \Sigma N)^* \). The proof is completed.

Lemma 4. If \(U \) is a neighborhood of \(x \), then there exists a compact set \(M \) in \(T \) such that \(xM \subset U \) and \(\Sigma \subset SM^{-1} \).

Proof. Define \(N = K \cap \Sigma \) where \(K \) is a compact set in \(T \) such that \(T = SK \). If \(n \in N \), then \(xn \in (xS)^* \) and \(x \in (xSn^{-1})^* \). Thus \(n \in N \) implies the existence of \(s_n \in S \) such that \(xsn^{-1} \in \text{init} U \) and hence the existence of a compact neighborhood \(W_n \) of \(s_nn^{-1} \) such that \(xW_n \subset U \).

Since \(N \) is compact by Lemma 2, there is a finite subset \(F \) of \(N \) for which \(N \subset \bigcup_{n \in F} W_n^{-1}s_n \). Define \(M = \bigcup_{n \in F} W_n \). Clearly \(xM \subset U \). Using Lemma 2 we conclude that \(\Sigma \subset SN \subset SM^{-1} \). The proof is completed.

Let there be distinguished in \(T \) certain sets, called *admissible*, which satisfy this condition: If \(A \) is an admissible set and if \(B \) is a set in \(T \) such that \(A \subset BK \) for some compact set \(K \) in \(T \), then \(B \) is an admissible set. A subgroup \(R \) of \(T \) is said to be *recursive* at \(x \) provided that to each neighborhood \(U \) of \(x \) there corresponds an admissible set \(A \) such that \(A \subset R \) and \(xA \subset U \).

Lemma 5. If \(T \) is recursive at \(x \), then \(\Sigma \) is recursive at \(x \).

Proof. Let \(U \) be a neighborhood of \(x \). There are neighborhoods \(V \) of \(x \) and \(W \) of \(e \) such that \(W = W^{-1} \), \(W \) is compact and \(VW \subset U \).

By Lemma 3 we may suppose that \(V \cap x(T - \Sigma W) = \emptyset \). There exists an admissible set \(A \) in \(T \) such that \(xA \subset V \). Clearly \(A \subset \Sigma W \) and \(xA W \subset U \). Define \(B = \Sigma \cap A W \). Since \(A \subset BW \), \(B \) is an admissible set. Also \(B \subset \Sigma \) and \(xB \subset U \). The proof is completed.
Lemma 6. If Σ is recursive at x, then S is recursive at x.

Proof. Let U be an open neighborhood of x. By Lemma 4 there exists a compact set M in T such that $xM \subseteq U$ and $\Sigma \subseteq SM^{-1}$. Let V be a neighborhood of x for which $VM \subseteq U$. There exists an admissible set A such that $A \subseteq \Sigma$ and $xA \subseteq V$. Hence $xAM \subseteq U$. Define $B = S \cap AM$. Since $A \subseteq BM^{-1}$, B is an admissible set. Also $B \subseteq S$ and $xB \subseteq U$. The proof is completed.

The following theorem is an immediate consequence of Lemmas 5 and 6.

Theorem. If T is recursive at x, then S is recursive at x.

An interpretation of admissibility arises if we define an admissible subset of T to be a relatively dense subset of T. The term "recursive" is then replaced by "almost periodic." For other applications, see the paper cited above.

University of Pennsylvania

FIXED POINT THEOREMS FOR INTERIOR TRANSFORMATIONS

O. H. HAMILTON

If M is a bounded continuum in a Euclidean plane E which does not separate E and T is an interior continuous transformation of M onto a subset of E which contains M, does T leave a point of M invariant? It is the purpose of this paper to answer this question in the affirmative for certain types of locally connected continua.

Using a notation introduced by Eilenberg [2, p. 168] a continuum M will be said to have property (b) provided every continuous transformation of M into the unit circle S in the Cartesian plane, with center at o, is homotopic to a constant mapping, that is, a transformation which transforms each point of M into a single point of S. If T is a continuous transformation of a subset A of the plane E into a subset B of E, then for each point x of A let $T'(x)$ be the point y of S such that the directed line segment oy is parallel in direction and sense to the directed line segment $x, T(x)$. Then T' will be referred to as the transformation of A into S derived from T. Such a transformation

Presented to the Society, September 3, 1947; received by the editors June 10, 1947.

1 Numbers in brackets refer to the references cited at the end of the paper.