Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

Derivatives of infinite order


Authors: R. P. Boas Jr. and K. Chandrasekharan
Journal: Bull. Amer. Math. Soc. 54 (1948), 523-526
DOI: https://doi.org/10.1090/S0002-9904-1948-09031-0
Addendum: Proc. Amer. Math. Soc. 2 (1951), 422.
Correction: Bull. Amer. Math. Soc., Volume 54, Number 12 (1948), 1191--1191
MathSciNet review: 0025527
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. Thøger Bang, Om quasi-analytiske Funktioner, Thesis, University of Copenhagen,], 1946 (Danish). MR 0017782
  • 2. R. P. Boas, Jr., A theorem on analytic functions of a real variable, Bull. Amer. Math. Soc. vol. 41 (1935) pp. 233-236.
  • 3. H. Cartan and S. Mandelbrojt, Solution du problème d’équivalence des classes de fonctions indéfiniment dérivables, Acta Math. 72 (1940), 31–49 (French). MR 0001782, https://doi.org/10.1007/BF02546327
  • 4. P. Dienes, The Taylor series, Oxford, 1931.
  • 5. V. Ganapathy Iyer, Sur un problème de M. Carleman, C. R. Acad. Sci. Paris. vol. 199 (1934) pp. 1371-1373.
  • 6. V. Ganapathy Iyer, On singular functions, J. Indian Math. Soc. (N.S.) 8 (1944), 94–108. MR 0013172
  • 7. J. D. Hill, Some properties of summability, Duke Math. J. 9 (1942), 373–381. MR 0006377
  • 8. S. Mandelbrojt, Analytic functions and classes of infinitely differentiable functions, Rice Inst. Pamphlet 29 (1942), no. 1, 142. MR 0006354
  • 9. Alfred Pringsheim, Zur Theorie der Taylor’schen Reihe und der analytischen Functionen mit beschränktem Existenzbereich, Math. Ann. 42 (1893), no. 2, 153–184 (German). MR 1510771, https://doi.org/10.1007/BF01444177
  • 10. G. Vitali, Sui limiti per n = ∞ delle derivate nma delle funzioni analitiche, Rend. Circ. Mat. Palermo vol. 14 (1900) pp. 209-216.
  • 11. Zygmunt Zahorski, Sur l’ensemble des points singuliers d’une fonction d’une variable réelle admettant les dérivées de tous les ordres, Fund. Math. 34 (1947), 183–245 (French). MR 0025545


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1948-09031-0