A NOTE ON LACUNARY POLYNOMIALS

MORRIS MARCEN

1. Introduction. In the present note we shall give an elementary derivation of some new bounds for the p smallest (in modulus) zeros of the polynomials of the lacunary type

$$f(z) = a_0 + a_1 z + \cdots + a_p z^p + a_{n_1} z^{n_1} + a_{n_2} z^{n_2} + \cdots + a_{n_k} z^{n_k}, \quad a_0 a_p \neq 0, \quad 0 < p = n_0 < n_1 < \cdots < n_k.$$

This will be done by the iterated application, first, of Kakeya's Theorem\(^1\) that, if a polynomial of degree n has p zeros in a circle C of radius R, its derivative has at least $p - 1$ zeros in the concentric circle C' of radius $R' = R/(n, p)$; and, secondly, of the specific limits

$$\phi(n, p) \leq \csc \left[\frac{\pi}{2(n - p + 1)} \right],$$

$$\phi(n, p) \leq \prod_{j=1}^{n-p} \frac{n+j}{n-j}$$

furnished by Marden\(^2\) and Biernacki\(^3\) respectively.

2. Derivation of the bounds. An immediate corollary to Kakeya's Theorem is:

Theorem I. If the derivative of an nth degree polynomial $P(z)$ has at most $p - 1$ zeros in a circle Γ of radius ρ, then $P(z)$ has at most p zeros in the concentric circle Γ' of radius $\rho' = \rho/\phi(n, p+1)$.

We shall use Theorem I to prove the following theorem.

Theorem II. If all the zeros of the polynomial

$$f_0(z) = n_1 n_2 \cdots n_k a_0 + (n_1 - 1)(n_2 - 1) \cdots (n_k - 1)a_1 z$$

$$+ \cdots + (n_1 - p)(n_2 - p) \cdots (n_k - p)a_p z^p$$

lie in the circle $|z| \leq R_0$, at least p zeros of polynomial (1.1) lie in the circle

For this purpose we define the sequence of polynomials

\begin{align}
F_0(z) &= z^{n_0}f(1/z), \\
F_j(z) &= z^{1-n_k-n_l+j}F_{j-1}(z), \quad j = 1, 2, \ldots, k.
\end{align}

We may verify easily that

\begin{equation}
F_k(z) = z^p f_0(1/z).
\end{equation}

All the zeros of \(F_k(z) \) therefore lie outside the circle \(|z| \geq (1/R_0) \). By equation (2.3), the zeros of \(F_{k-1}^{(j)}(z) \) are the zeros of \(F_k(z) \) and a zero of multiplicity \(n_1 - p - 1 \) at the origin and, hence, only the latter lies inside \(|z| < 1/R_0 \). By Theorem I, \(F_{k-1}(z) \) has at most \(n_1 - p \) zeros in

\[|z| < [R_0 \phi(n_1, n_1 - p + 1)]^{-1} = 1/R(p, 1). \]

Let us now assume, as already verified for \(j = 1, 2, \ldots, s \), that \(F_{k-j}(z) \) has at most \(n_j - p \) zeros in the circle \(|z| < 1/R(p, j) \). From equations (2.3) with \(j \) replaced by \(k-s \), it follows then that \(F_{k-s}(z) \) has zeros of total multiplicity at most

\[(n_{s+1} - n_s - 1) + (n_s - p) = n_{s+1} - p - 1 \]

in this circle. By Theorem I, therefore, \(F_{k-s}(z) \) has at most \(n_{s+1} - p \) zeros in the circle

\[|z| < [R(p, s) \phi(n_{s+1}, n_{s+1} - p + 1)]^{-1} = 1/R(p, s + 1). \]

By mathematical induction, it follows that \(F_0(z) \) has at most \(n_k - p \) zeros in the circle \(|z| < 1/R(p, k) \).

By (2.2), \(f(z) \) has therefore at most \(n_k - p \) zeros outside the circle \(|z| = R(p, k) \) and hence at least \(p \) zeros in or on this circle.

By using the limits (1.2) and (1.3), we now deduce from Theorem II the following corollary.

Corollary 1. At least \(p \) zeros of polynomial (1.1) lie in each of the circles

\begin{align}
|z| &\leq R_0 \csc^k \left(\pi/2p \right), \\
|z| &\leq R_0 \prod_{i=1}^{k} \prod_{j=1}^{p-1} (n_i + j)/(n_i - j).
\end{align}

If it is known that all the zeros of the polynomial

\[h(z) = a_0 + a_1z + \cdots + a_pz^p \]
lie in the circle $|z| \leq R_1$, then the application of a theorem in a previous paper permits us to take

$$R_0 \leq \left[R_1 n_2 \cdots n_k / (n_1 - p)(n_2 - p) \cdots (n_k - p) \right] = R_2.$$

As (2.6) with R_0 replaced by R_2 is the bound furnished recently by Biernacki, we see that the bound (2.6) is at least as good as his bound.

3. **Application to lacunary series.** We shall now use Corollary 1 to prove the following theorem.

Theorem III. Let $\rho_1, 0 < \rho_1 \leq \infty$, be the radius of convergence of the series

$$g(z) = a_0 + a_1 z + \cdots + a_p z^p + a_{n_1} z^{n_1} + a_{n_2} z^{n_2} + \cdots,$$

$$a_0 a_p \neq 0, \quad 1 \leq p < n_1 < n_2 < \cdots.$$

Let the series $\sum (1/n_j)$ be convergent, so that the product

$$A(m) = \prod_{j=1}^{\infty} [1 - (m/n_j)]$$

is also convergent. Let ρ, the radius of the circle $|z| = \rho$ containing all the zeros of the polynomial

$$G(z) = A(0) a_0 + A(1) a_1 z + \cdots + A(p) a_p z^p,$$

be such that

$$\rho \prod_{j=1}^{p-1} A(-j)/A(j) = \rho_2 < \rho_1.$$

Then $g(z)$ has at least p zeros in the circle $|z| \leq \rho_2$.

Let us consider equations (1.1) and (2.1) as defining the sequences of polynomials $f(z, k)$ and $f_0(z, k)$ respectively. When $k \to \infty$, the sequence $[f_0(z, k)/n_1 n_2 \cdots n_k]$ converges uniformly to $G(z)$ in $|z| \leq \rho$. By Hurwitz' theorem, for any given positive ϵ, we may choose a positive k_1 so large that all the zeros of each $f_0(z, k)$, $k \geq k_1$, lie in the circle $|z| \leq \rho + \epsilon$. By Corollary 1, at least p zeros of the $f(z, k)$, $k \geq k_1$, lie in the circle

$$|z| \leq (\rho + \epsilon) \prod_{j=1}^{p-1} \prod_{i=1}^{k} (1 + j/n_i)/(1 - j/n_i) < \rho_2 + \epsilon (\rho_2/\rho) = \rho_2'.$$

Choosing \(\epsilon \) so small that \(\rho'_1 + \epsilon < \rho_1 \), we see that the \(f(z, k) \) converge uniformly to \(g(z) \) in \(|z| \leq \rho'_1 \). Thus \(g(z) \) has \(p \) zeros in the circle \(|z| < \rho'_1 + \epsilon \) and, since \(\epsilon \) is arbitrary, in the circle \(|z| \leq \rho_2 \).

As a corollary to Theorem III, we may prove that, if \(g(z) \) is an entire function, it assumes every finite value an infinite number of times.

University of Wisconsin, Milwaukee