A NOTE ON HILBERT'S NULLSTELLENSATZ

RICHARD BRAUER

In a recent paper, O. Zariski\(^1\) has given a very simple proof of Hilbert's "Nullstellensatz." We give here another proof which while slightly longer is still more elementary.

Let \(K\) be an algebraically closed field. We consider a system of conditions

\[
\begin{align*}
f_1(x_1, x_2, \cdots, x_n) &= 0, \\
& \quad \cdots, \\
f_r(x_1, x_2, \cdots, x_n) &= 0; \\
g(x_1, x_2, \cdots, x_n) &\neq 0
\end{align*}
\]

where \(f_1, f_2, \cdots, f_r\), and \(g\) are polynomials in \(n\) indeterminates \(x_1, x_2, \cdots, x_n\) with coefficients in \(K\). The theorem states that if the conditions (1) cannot be satisfied by any values \(x_i\) of \(K\),\(^2\) a suitable power of \(g\) belongs to the ideal \((f_1, f_2, \cdots, f_r)\).\(^3\)

PROOF. Let \(k\) be the number of \(x_j\) which actually appear in \(f_1, f_2, \cdots, f_r\) and let \(x_1\) be the \(x_j\) of this kind with the smallest subscript. Denote by \(l\) the number of \(f_p\) in which \(x_1\) actually appears. Let \(m\) be the smallest positive value which occurs as degree in \(x_1\) of one of the \(f_p\).\(^4\) Now define a partial order for the different systems (1) using a lexicographical arrangement. If (1*) is a second system of the same type as (1) and if \(k^*, l^*,\) and \(m^*\) have the corresponding significance, we shall say that (1*) is lower than (1) if either \(k^*<k\), or \(k^*=k\) and \(l^*<l\), or \(k^*=k\), \(l^*=l\), and \(m^*<m\).

Suppose now that Hilbert's theorem is false. Then there exist systems (1) which are not satisfied by any values \(x_j\) in \(K\), and for which no power of \(g\) lies in \((f_1, f_2, \cdots, f_r)\). Choose such a system (1) taking it as low as possible. Then for all systems (1*) lower than (1) the theorem will hold.

If \(k, l, m\) have the same significance as above, one of the \(f_p\), say

\(f_1\), is a system (1) which is not satisfied by any values \(x_j\) in \(K\), and for which no power of \(g\) lies in \((f_1, f_2, \cdots, f_r)\). Choose such a system (1) taking it as low as possible. Then for all systems (1*) lower than (1) the theorem will hold.

Received by the editors November 1, 1947.

\(^2\) If we wish to formulate the theorem for arbitrary fields \(K\) as it is done in Zariski's paper, we have to consider a system of values \(x_1, x_2, \cdots, x_n\) belonging to extension fields of finite degree over \(K\). If no such system satisfies the conditions (1), the same conclusion can be drawn. The same proof can be used.

\(^3\) We do not use anything from the theory of ideals except the notation \((f_1, f_2, \cdots, f_r)\) for the set of all polynomials of the form \(P_1 f_1 + P_2 f_2 + \cdots + P_r f_r \subseteq K[x_1, x_2, \cdots, x_n]\), and facts which are immediate consequences.

\(^4\) The numbers \(k, l, m\) do not depend on \(g\).
HILBERT’S NULLSTELLENSATZ 895

f_1, has degree m in x_i. Set

\[(2) \quad f_1 = hx_i^m + f_1^*\]

where h is the highest coefficient of f_1 as polynomial in x_i.

Neither of the following systems:

\[(3) \quad f_1 = 0, f_2 = 0, \ldots, f_r = 0, h = 0; g \neq 0;\]
\[(4) \quad f_1 = 0, f_2 = 0, \ldots, f_r = 0; hg \neq 0\]

can be satisfied by values x_j of K, since otherwise (1) would be satisfied by the same values. Replace (3) by

\[(3^*) \quad f_1^* = 0, f_2 = 0, \ldots, f_r = 0, h = 0; g \neq 0.\]

Then (3*) too cannot be satisfied by values x_j in K. Clearly, (3*) is lower than (1). Since Hilbert’s theorem then holds for (3*), we have

\[(5) \quad g^* \subseteq (f_1, f_2, \ldots, f_r, h)\]

for a suitable exponent s.

In the discussion of (4), we distinguish two cases.

Case A. $\ell \geq 2$. Then x_i appears in some f_ρ with $\rho \geq 2$, say in f_2. Divide f_2 by f_1 considering both as polynomials in x_i alone. If we multiply by a suitable power h^s of the highest coefficient h of f_1, we can remove the denominators and set

\[h^s f_2 = Q f_1 + R\]

where Q and R are polynomials in all the x_j and where R is of degree smaller than m in x_i. The system.

\[(4^*) \quad f_1 = 0, R = 0, f_3 = 0, \ldots, f_r = 0; hg \neq 0\]

cannot be satisfied by any values x_j in K, since (4*) would imply (4). But (4*) is lower than (1) and hence Hilbert’s theorem holds for (4*). Then, for a suitable exponent t, $(hg)^t \subseteq (f_1, R, f_3, \ldots, f_r)$.

Replacing R by $h^g f_2 - Q f_1$, we obtain

\[(6) \quad h^t g^t \subseteq (f_1, f_2, \ldots, f_t).\]

It follows from (5) that g^{t+t^t} belongs to

\[g^t(f_1, f_2, \ldots, f_r, h^t) \subseteq g^t(f_1, f_2, \ldots, f_r, h^t) \subseteq (f_1, f_2, \ldots, f_r, h^t).\]

Then (6) shows that $g^{t+t^t} \subseteq (f_1, f_2, \ldots, f_r)$, in contradiction to the assumption that no power of g belongs to (f_1, f_2, \ldots, f_r).

Case B. $\ell = 1$. If we succeed again in establishing (6), we have the same contradiction as in the Case A, and Hilbert’s theorem will be proved.
In this case divide \(g^{m+1} \) by \(f_1 \), considering both as polynomials in \(x_i \) alone. We may then set

\[
h^q g^{m+1} = Qf_1 + R
\]

where \(q \) is again a positive integer, where \(Q \) and \(R \) are polynomials in all the \(x_i \), and where the degree of \(R \) in \(x_i \) is smaller than \(m \). Consider here the system

\[
(f_2 = 0, f_3 = 0, \cdots, f_r = 0; hR \neq 0)\tag{4**}
\]

We wish to show that \((4**)\) cannot be satisfied by values \(x_i \) in \(K \).

If this were not so, choose a system of values \(x_1^*, x_2^*, \cdots, x_n^* \) of \(K \) which satisfy the conditions \((4**)\). Replace here \(x_i^* \) by an indeterminate \(x_i \), leaving all the other \(x_j^* \) fixed. The conditions \(f_2 = 0, f_3 = 0, \cdots, f_r = 0, \) and \(h \neq 0 \) are not affected, since \(x_i \) does not appear in them. As shown by \((2)\), the equation \(f_1 = 0 \) is of degree \(m \) in \(x_i \) and has therefore \(m \) roots \(x_i^{(0)} \) in the algebraically closed field \(K \). If \(g \) would not vanish when we set \(x_i = x_i^{(0)} \), we would thus find a system of values of \(K \) which satisfies all the conditions \((4)\) and this is impossible. Hence \(g \) must vanish when we set \(x_i = x_i^{(0)} \) and it follows from \((7)\) that the same holds for \(R \). Moreover, as root of the equation \(R = 0 \) in \(x_i \), the quantity \(x_i^{(0)} \) has the same multiplicity as for \(f_1 = 0 \). Thus the equation \(R = 0 \) of degree less than \(m \) in \(x_i \) has \(m \) roots \(x_i = x_i^{(0)} \). Consequently, \(R \) must vanish identically in \(x_i \). However, for \(x_i = x_i^{*} \), we had \(R \neq 0 \), as shown by \((4**)\). Thus the assumption that \((4**)\) can be satisfied by values of \(K \) leads to a contradiction.

If \(r > 1 \), the system \((4**)\) is lower than \((1)\) and we may again apply Hilbert's theorem. This shows that a suitable power \((hR)^v\) belongs to \((f_2, f_3, \cdots, f_r)\). This still holds for \(r = 1 \), when we interpret \((f_2, f_3, \cdots, f_r)\) as the zero ideal. Indeed, since \((4**)\) cannot be satisfied, \(hR \) must vanish for all systems of values \(x_i \) of \(K \), and hence identically.\(^6\) Now \((7)\) yields

\[
(h^{q+1}g^{m+1})^v = (hQf_1 + hR)^v \subseteq (f_1, f_2, \cdots, f_r).
\]

If the integer \(t \) satisfies the inequalities \(t \geq (q+1)v, t \geq (m+1)v \), then \((6)\) will hold again. But this is all we had to show and the proof of Hilbert's theorem is complete.

\[\text{University of Toronto}\]

\(^6\) If \(r = 1 \), the system \((4**)\) is to consist only of the inequality \(hR \neq 0 \).

\(^5\) We assume the elementary theorem that if a polynomial in several variables vanishes for all systems of values of the underlying field \(K \) and if \(K \) is either infinite or contains at least sufficiently many elements, the polynomial vanishes identically.