TOPOLOGICAL GROUPS AND GENERALIZED MANIFOLDS

EDWARD G. BEGLE

In a recent paper [4],

Montgomery showed that in a locally euclidean 3-dimensional group, any 2-dimensional closed subgroup is also locally euclidean. In this note we prove an analogous result for higher dimensions and more general spaces.

THEOREM. Let G be a locally compact space which is both a topological group and an n-dimensional orientable generalized manifold. Let H be a closed connected $(n-1)$-dimensional subgroup. Then, if H carries a nonbounding $(n-1)$-cycle, H is also an orientable generalized manifold.

The terminology used in the statement of this theorem, and in what follows, is that of our two previous papers on generalized manifolds [1, 2], and we assume that the reader is familiar with them.

We make, however, one change. We find it convenient to define infinite cycles in the following way: We add to G an ideal point, g^+, taking as neighborhoods of g^+ those open subsets of G whose closures are not compact. Then $G^+ = G \cup g^+$ is compact. Now an infinite cycle of G is defined to be a relative cycle of G^+ mod g^+. That this definition of infinite cycles is equivalent to the one used in [2] follows from Theorem 1.1 of [2].

LEMMA 1. Given any neighborhood M of the unit element e of G, there is a neighborhood N of E such that for any infinite cycle Γ^k on H, $0 \leq k \leq n-1$, and for any $g \in N$, $\Gamma^k \sim g \Gamma^k$ on $M \cdot H$.

PROOF. Let $M_{n-1} \subset M$ have a compact closure. Choose a sequence

$$M_{n-1} \supset N_{n-1} \supset M_{n-2} \supset \cdots \supset M_0 \supset N_0$$

such that N_i is obtained from M_i by the local connectedness of G in dimension i, and such that $M_i, M_i \subset N_{i+1}$. Finally let N be such that $N \cdot N \subset N_0$.

Now let $g \in N$. To show that $\Gamma^k \sim g \cdot \Gamma^k$ on $M \cdot H$, it is sufficient to show that the coordinates of these cycles on the nerve of any covering U of G are homologous on $(M \cdot H)^+$. To this end, given a covering U, choose $U' \triangleleft U$. Let X be the complement of the union of those sets of U' which contain g^+. Then X is a compact set. Let $X_i = M_0 \cdot X$ and $X_i = M_{i-1} \cdot X_{i-1}$. Each X_i is a compact set.

Received by the editors December 10, 1947.

1 Numbers in brackets refer to the bibliography at the end of the paper.
A finite number of translations of \(N_{n-1} \) cover \(X_n \), say
\[
g_{1,n-1} \cdot N_{n-1}, g_{2,n-1} \cdot N_{n-1}, \ldots, g_{k,n-1} \cdot N_{n-1}.
\]
For each \(i \), let \(U_{i,n-1} \) be a refinement of \(U' \) such that any \((n-1)\)-cycle on \(U_{i,n-1} \) in \(g_{i,n-1} \cdot N_{n-1} \) has its projection to \(U' \) bounding in \(g_{i,n-1} \cdot M_{n-1} \). Let \(U_{n-1} \) be a common refinement of these coverings.

Next, a finite number of translations of \(N_{n-2} \) cover \(X_{n-1} \). From these we obtain a refinement \(U_{n-2} \) of \(U_{n-1} \) by the procedure above, this time using the local connectedness of \(G \) in dimension \(n-2 \). Proceeding in this fashion for another \(n-2 \) steps we arrive at a covering \(U_0 \).

Let \(\Gamma_0^k \) and \(g \cdot \Gamma_0^k \) be the coordinates of \(\Gamma^k \) and \(g \cdot \Gamma^k \) on \(U_0 \). We assert that \(\pi \Gamma_0^k \) and \(\pi g \cdot \Gamma_0^k \) are homologous on \(U \) on \((M \cdot H)^+\), where \(\pi \) is the projection from \(U_0 \) to \(U \). Let \(\Delta \) be the cartesian product of \(|\Gamma_0^k| \) with a unit segment, subdivided simplicially in such a way that all the vertices of \(\Delta \) are in the base, \(\Delta_0 = |\Gamma_0^k| \times 0 \), and in the top, \(\Delta_1 = |\Gamma_0^k| \times 1 \). Let \(\overline{\Delta} \) be the closed subcomplex of \(\Delta \) generated by those simplexes of \(\Gamma_0^k \) which are on \(X \). We define a partial realization \(\tau' \) of \(\Delta \) on \(U_0 \) by letting \(\tau' \sigma = \sigma \) if \(\sigma \in \Delta_0 \) and \(\tau' \sigma = g \cdot \sigma \) if \(\sigma \in \Delta_1 \).

\(\tau' \) induces a partial realization \(\overline{\tau} \) of \(\overline{\Delta} \) on \(U_0 \). In view of the choices of the coverings made above, the usual argument shows that there is a full realization \(\overline{\tau} \) of \(\overline{\Delta} \) on \(U' \), where, if \(\pi_0 \) is the projection from \(U_0 \) to \(U' \), \(\overline{\tau} = \pi_0 \overline{\tau}' \) whenever the latter is defined. Also, \(\overline{\tau} \overline{\Delta} \) is on \(M_{n-1} \cdot H \).

We can now define a full realization of \(\Delta \) on \(U \) in the following fashion. The projection \(\pi_0 \) can be so chosen that a vertex of \(U_0 \) not on \(X \) is projected into a vertex of \(U' \) which contains \(g \). Since \(U' < U \), a projection \(\pi \) of \(U' \) to \(U \) can be so chosen that any simplex of \(U_0 \) which has a vertex not on \(X \) is projected by \(\pi \pi_0 \) into the simplex of \(U \) consisting of those vertices of \(U \) which contain \(g \). Any cycle in this simplex bounds in this simplex, so \(\pi \pi_0 \tau' (\Delta - \overline{\Delta}) \) can be filled in to make a full realization of \(\Delta - \overline{\Delta} \) on \(U \), and this together with \(\pi \overline{\tau} \overline{\Delta} \) makes a full realization \(\tau \) of \(\Delta \) on \(U \). Since \(\Gamma_0^k \times 0 \rightarrow \Gamma_0^k \times 1 \) on \(\Delta \), \(\tau (\Gamma_0^k \times 0) \sim \tau (\Gamma_0^k \times 1) \) on \(U \). But \(\tau (\Gamma_0^k \times 0) = \pi \pi_0 \Gamma_0^k \) and \(\tau (\Gamma_0^k \times 1) = \pi \pi_0 g \cdot \Gamma_0^k \). Since it is easily seen from the construction that this homology takes place on \((M \cdot H)^+\), the proof is complete.

Clearly the same proof suffices for the following lemma.

Lemma 2. Given any neighborhood \(M \) of \(e \) in \(G \), there is a neighborhood \(N \) of \(e \) such that for any closed subset \(X \) of \(H \) and any cycle \(\Gamma_{-k} \) of \(H \) mod \(X \), \(\Gamma_{-k} \sim g \cdot \Gamma_{-k} \) in \(M \cdot H \) mod \(M \cdot X \), whenever \(g \in N \).

Lemma 3. If \(D \) is an open connected subset of \(G \), then any two points
of D lie on a compact connected subset of D.

Proof. Since G is lc°, any neighborhood O of a point d of D contains a neighborhood W of d with $W \subseteq D$ such that any point $w \in W$ lies, together with d, on a compact continuum in $O \cap D$. Now let D_1 be the set of all points of D which can be joined to a fixed point $d_1 \in D$ by compact continua. Then, by the above, D_1 is both open and closed in D. Hence, since D is connected, D_1 is all of D.

Lemma 4. If O is a neighborhood of e such that $C(O \cdot H)$ (where C means closure) is not all of G, then $O \cdot H - H$ has at least two components.

Proof. Let g be a point of $G - C(O \cdot H)$, and let K be a compact connected set which contains both e and g. Let N be a neighborhood of e in O, chosen by Lemma 1. A finite number of translations of N cover K, and from these we may choose a sequence

$$e \in N, N_1, N_2, \ldots, N_k \ni g$$

where $N_i = g_i \cdot N$ and such that $N_i \cap N_{i+1} \neq \emptyset$. Let \bar{g}_i be a point of $N_i \cap N_{i+1}$. Now, $\bar{g}_{i-1} \in g_i \cdot N$, so $g_i^{-1} \cdot \bar{g}_{i-1} \in N$. Hence, by Lemma 1,

$$\Gamma^{n-1} \sim g_i^{-1} \cdot \bar{g}_{i-1} \cdot \Gamma^{n-1}$$

where Γ^{n-1} is a nonbounding cycle on H. Therefore,

$$g_i \cdot \Gamma^{n-1} \sim \bar{g}_{i-1} \cdot \Gamma^{n-1}.$$

Similarly, $\bar{g}_i \in g_i \cdot N$, and

$$g_i \cdot \Gamma^{n-1} \sim \bar{g}_i \cdot \Gamma^{n-1}.$$

Thus, we have

$$\Gamma^{n-1} \sim g \cdot \Gamma^{n-1}.$$

Now $\Gamma^{n-1} - g \cdot \Gamma^{n-1}$ is a cycle of $H \cup (G - O \cdot H)$ and $\Gamma^{n-1} - g \cdot \Gamma^{n-1} \sim 0$ in G. Hence [3, p. 227 (14.2)] there is in G a cycle $\Gamma^n \bmod (H \cup (G - O \cdot H))$ such that $FT^n = \Gamma^{n-1} - g \cdot \Gamma^{n-1}$. Let \bar{T}^n be the fundamental n-cycle of G, and let $T^n = \bar{T}^n$ on $G - (O \cdot H - H)$. Let $T^n = \bar{T}^n - T^1$.

In a neighborhood of any point of $O \cdot H - H$, Γ^n is homologous to some multiple of T^n. If we assume that $O \cdot H - H$ is connected, then (cf. [1, p. 569]) this multiple, is the same for all points of $O \cdot H - H$, that is, $r \Gamma^n = T^n$.

By definition, T^1 is on $H \cup (G - O \cdot H)$. Since H and $G - O \cdot H$ are closed and disjoint, and since $\dim H < n$, T^1 must be on $G - O \cdot H$, so FT^1 is also on $G - O \cdot H$.
But, from $0 = F\Gamma^n = F(T_1^n + T_2^n)$, we have
\[
F\Gamma_1^n = - F(T_2^n) = - F(r\Gamma^n) = - r(\Gamma^{n-1} - g\cdot \Gamma^{n-1}).
\]
This is not on $G - O \cdot H$, since Γ^{n-1} is on H. Thus, the assumption that $O \cdot H - H$ has only one component leads to a contradiction.

We now choose a fixed connected neighborhood of e, satisfying the condition of Lemma 4, and denote by J the product of H by this neighborhood. We note that J is a connected generalized n-manifold. It is not a group, but for any two elements of J which are close enough to H, their product in G is in J.

Lemma 5. H is the boundary of each domain of $J - H$.

Proof. Let D be any component of $J - H$. Since J is lc^0, D is open. Some point $h \in H$ is a limit point of D, or else J would not be connected. Let O be a neighborhood of e. Then $h \cdot O$ contains a point $d \in D$, that is, $h \cdot o = d$. Now $h^{-1} \cdot d = o \in O$. But $h^{-1} \cdot d$ is also in D. For $o \in H$, and, since H is connected, $H \cdot o$ lies in one component of $J - H$. Since $h \cdot o = d$ is in D, $H \cdot o$ lies in D, and consequently, $e \cdot o = o$ is in D. Therefore e is a limit point of D. Similarly, if h is any other point of H, then the neighborhood $h \cdot O$ contains $h \cdot o$ which is in $H \cdot o$ and therefore in D. Thus, h is a limit point of D, which proves the lemma.

Lemma 6. $J - H$ has just two components.

Proof. By Lemma 2, it is enough to show that H does not have three complementary domains. Suppose there were three, D_0, D_1 and D_2. Let p_1, p_2 be points in D_1 and D_2, respectively, and let Y_1, Y_2 be neighborhoods of p_1, p_2 such that \overline{Y}_i is compact and is in D_i.

$\gamma^0 = p_1 - p_2$ is a compact 0-dimensional cycle in $Y = Y_1 \cup Y_2$. γ^0 not ~ 0 in $J - H$, since p_1 and p_2 are in different components. But for any point $d_0 \in D_0, \gamma^0 \sim 0$ in $J - d_0 \cdot H$. For let O be a neighborhood of e not meeting $d_0 \cdot H$, which is in D_0, and let O' be chosen so that every compact 0-cycle in O' bounds in O. Choose $d_1 \in \partial O \cap D_1$ and $d_2 \in \partial O' \cap D_2$. Then $d_1 \sim d_2$ in O. By Lemma 3, $p_1 \sim d_1$ in $D_1, p_2 \sim d_2$ in D_2. Hence, $p_1 \sim p_2$ in $D_1 \cup D_2 \cup O$, which does not meet $d_0 \cdot H$.

Now, by Lemma 5.2 of [2], there is a compact cocycle γ_n in Y such that $(\Gamma^n \cdot \gamma_n) \sim \gamma^0$ in $J - H$, where Γ^n is the fundamental n-cycle of J, and such that $\gamma_n \sim 0$ in $J - d_0 \cdot H$, for any $d_0 \in D_0$. Since γ_n is a compact cocycle of $D_1 \cup D_2$, there is an infinite n-cycle Γ_n of $D_1 \cup D_2$.

The main outline of this proof, and to some extent that of Lemma 7, is derived from Wilder [6, 7].
such that $KI(\Gamma^n, \gamma_n) = 1$. Let $\Gamma^{n-1} = FT^n$, so that Γ^{n-1} is an infinite cycle of H.

We now choose a neighborhood M of e which does not meet \overline{V}, and a neighborhood N satisfying the conditions of Lemma 1. Let $d_0 \subseteq D_0 \cap N$. Then $\Gamma^{n-1} \sim d_0 \cdot \Gamma^{n-1}$ in $M \cdot H$. Let $\Gamma^n = \{ \Gamma^n_i \}$ and let the chains involved in the homology $\Gamma^{n-1} \sim d_0 \cdot \Gamma^{n-1}$ be $\{ C^n_i \}$. Then $\{ \Gamma^n_i \} = \{ \Gamma^n_i - C^n_i \}$ is such that $FT_i^{n-1} = d_0 \cdot \Gamma^{n-1}_i$. By construction, $KI(\Gamma^n_i, \gamma^n_i) = KI(\Gamma^n_i, \gamma^n_0)$, since none of the chains C^n_i meet \overline{V}.

$\{ \Gamma^n_i \}$ is not necessarily a Čech cycle. But, for each covering U_δ, let $U_\rho(t)$ be an essential refinement (see [3, II 27: 13]) of U_δ relative to cycles of $J \cdot H$. Then $\{ \Gamma^n_i \} = \{ \pi_\rho(t) \Gamma^n_i \}$ is a Čech cycle mod $(d_0 \cdot H)^k$ and $KI(\Gamma^n_i, \gamma^n_0) = KI(\Gamma^n_i, \gamma^n_0)$ for all ξ.

But now we have reached a contradiction. For $\gamma_n \sim 0$ in $J - d_0 \cdot H$, so its Kronecker index with any infinite n-cycle of $J - d_0 \cdot H$ must be zero. But $KI(\Gamma^n_i, \gamma_n) = KI(\Gamma^n_i, \gamma_n) = 1$.

Lemma 7. For each point $h \in H$, $r^k(J - H, h) = 0$ for $1 \leq k \leq n - 1$ and $r^0(J - H, h) = 1$.

Proof. It is sufficient to consider the case $h = e$. Given any neighborhood V of e, choose a neighborhood V_1 such that $C(\overline{C} \cdot (V_1 \cdot V_1))$ does not meet \overline{V}_1, where $B(V)$ is the boundary of V. Next choose a neighborhood V_2 such that if $\gamma^0 \subset V_2$, then $\gamma^0 \sim 0$ in V_2. Let V_3 be such that $\overline{V}_3 \cdot H$ does not contain all of V_3, and, finally, let W be such that if $\gamma^k \subset W$, then $\gamma^k \sim 0$ in V_3. We assert that for $k \geq 1$, any γ^k in $W - H$ bounds in $V - H$.

For let A and B be the two components of $J - H$ and let $\gamma^k = \gamma^k_A + \gamma^k_B$, where γ^k_A is the part of γ^k in A. Since $k \geq 1$, γ^k_A is a cycle and it is sufficient to show that $\gamma^k_A \sim 0$ in $V \cap A$. If it does not, let O be an open set in $W \cap A$ such that γ^k is in O and O does not meet H. Then, by Lemma 5.2 of [2], there is a compact cocycle γ_{n-k} in O such that $\Gamma^n \cdot \gamma_{n-k} \sim \gamma^k$ in O, γ_{n-k} not ~ 0 in $V \cap A$, and $\gamma_{n-k} \sim 0$ in V_3. Let Γ^n be an infinite cycle of $V \cap A$ such that $KI(\Gamma^n, \gamma_{n-k}) = 1$.

In order to apply an argument similar to that of the preceding lemma, we choose a point of B in the following fashion. Let c be a point of B in V_2 and not in $\overline{C} \cdot (V_2 \cdot H)$. By the choice of V_2, there is a continuum K in V_2 which contains both c and e. Let M be a neighborhood of e such that $M \cdot H$ does not meet \overline{O}. Choose N by Lemma 1 and so that $N \cdot K$ is in V_1. $N \cdot K - H$ is an open subset of J and hence is locally connected. Consequently, each component of $N \cdot K - H$ is also open. Let C be that component which contains c. Since C is open and $N \cdot K$ is connected, some point h in H must be a limit
point of \(C \). \(h \) is in \(V_1 \), since \(N \cdot k \) is in \(V_1 \), and therefore \(D = C \cdot h^{-1} \), containing \(d = ch^{-1} \), is an open connected subset of \(B \) and \(e \) is a limit point of \(D \). Also, since \(c \) is not in \(V_3 \cdot H \), neither is \(d \).

From \(N \cdot D \) and \(N \) itself a simple chain of regions running from \(e \) to \(d \) can be extracted, each element of the chain being a translation of \(N \).

Returning now to \(\Gamma^{n-k-1} \), let \(\Gamma^{n-k-1} \) be the part of \(F \Gamma^{n-k} \) on \(H \), so that \(\Gamma^{n-k-1} \) is a cycle of \(H \) mod \(X \), where \(X = \overline{V} \cap (H - V) \). Using the simple chain above, we have \(\Gamma^{n-k-1} \sim d \cdot \Gamma^{n-k-1} \) in \(M \cdot D \). Let the chains of this homology be \(\{ C^n_{r_k} \} \). Then \(\Gamma^{n-k}_{r_k} - C^{n-k}_{r_k} \), for each \(r_k \), is, by the choice of \(V_1 \), an infinite cycle of \(V \). Also, by the choice of \(M \), no \(C^{n-k}_{r_k} \) meets \(\overline{O} \), so \(KI((\Gamma^{n-k}_{r_k} - C^{n-k}_{r_k}) \cdot \gamma^{n-k}_{r_k}) = KI(\Gamma^{n-k}_{r_k} \cdot \gamma^{n-k}_{r_k}) = 1 \) for each \(r_k \).

Now we can proceed to the same contradiction we reached in the previous lemma, since \(\gamma^{n-k}_{r_k} - 0 \) in \(V_3 \) so its Kronecker index with any infinite cycle of \(V_3 \) is zero. This disposes of the case \(k \geq 1 \).

For \(k = 0 \), let \(\overline{\gamma}^0 \) be based on a pair of points, one in \(W \cap A \) and the other in \(W \cap B \). The proof used above applies to show that any \(\gamma^0 \) in \(W - H \) is homologous in \(V - H \) to a multiple of \(\overline{\gamma}^0 \).

Lemma 8. For each point \(h \) of \(H \), \(r_k(h) = 0 \) for \(k < n - 1 \) and \(r_{n-1}(h) = 1 \).

This is an immediate consequence of Theorem 6.2 of [2] and Lemma 7.

Lemma 9. \(H \) is \(l \cdot c^{n-1} \).

Proof. Given a neighborhood \(V \) of \(e \), choose \(V_1 \) in \(V \) such that any \(\gamma^{k+1} \) on \(\overline{V}_1 \) bounds in \(V \). Choose \(W \subseteq V_1 \) by Lemma 7 so that any \(\gamma^k \) in \(A \cap W \) bounds in \(A \cap V_1 \) and similarly for \(B \). We assert that any \(\gamma^k \) in \(W \cap H \) bounds on \(\overline{V} \cap H \).

To show this it is enough to show that for any neighborhood \(O \) of \(e \), \(\gamma^k \sim 0 \) in \((O \cdot H) \cap \overline{V} \). In turn, to prove this it is sufficient to show that given any such \(\gamma^k \) and \(O \), and given any covering \(U_3 \), then there is a refinement \(U_3 \) such that \(\pi_2^k \sim 0 \) in \((O \cdot H) \cap \overline{V} \).

By Lemma 1 we can choose a point \(a \in A \cap O \) such that \(\gamma^k \sim a \cdot \gamma^k \) in \(O \cdot (W \cap H) \) and we can choose a similar point \(b \in B \cap O \). By the choice of \(W \), \(a \cdot \gamma^k \sim 0 \) in \(A \cap V_1 \), and similarly for \(b \cdot \gamma^k \). Thus, we have families of chains \(\{ C^k_{a,k} \} \) and \(\{ C^k_{b,k} \} \) in \(O \cdot (W \cap H) \), \(\{ D^k_{a,k} \} \) in \(A \cap V_1 \) and \(\{ D^k_{b,k} \} \) in \(B \cap V_1 \) such that

\[
\begin{align*}
FC^k_{a,k} &= a \cdot \gamma^k, & FC^k_{b,k} &= b \cdot \gamma^k, \\
FD^k_{a,k} &= a \cdot \gamma^k, & FD^k_{b,k} &= b \cdot \gamma^k.
\end{align*}
\]

Hence, for each \(\gamma^k \), \(D^k_{a,k} - C^k_{a,k} + C^k_{b,k} - D^k_{b,k} \) is a cycle \(\delta^k_{l+1} \) on \(U_3 \) in
There is a refinement \(U_2 \) of \(U \) such that \(\pi_2 \delta^{k+1} \) is the coordinate of a Čech cycle, \(\delta^{k+1} \) on \(\overline{V} \). By the choice of \(V_1 \), \(\delta^{k+1} \sim 0 \) in \(V \), so there is a chain \(E^{k+2} \) on \(U \) such that

\[
FE^{k+2} = \pi_2 \delta^{k+2}.
\]

Let \(E^{k+2} = E^{k+2}_a + E^{k+2}_b \), where \(E^{k+2}_b \) is the part of \(E^{k+2} \) on \(\overline{B} \). Now

\[
FE^{k+2}_a - \pi_2 D^{k+1} = -C^{k+1} + C^{k+1}_b - D^{k+1}_b - FE^{k+2}_b.
\]

The chain on the right-hand side is in \(O \cdot B \) while that on the left is on \(\overline{A} \). Hence, since \(\overline{A} \cap \overline{B} = H \), \(E^{k+1} = FE^{k+2}_a - \pi_2 D^{k+1} \) is in \(O \cdot H \) and, of course, in \(V \). But

\[
F(-E^{k+1}) - F(\pi_2^{k+1} D_{a,2}) = \pi_2^{k+1} \cdot \gamma_a.
\]

Hence, \(\pi_2^{k+1} \cdot \gamma_a \sim 0 \) in \((O \cdot H) \cap V \). But \(a \cdot \gamma_a \sim \gamma_a \) in \(O \cdot (W \cap H) \), so \(\pi_2^{k+1} \cdot \gamma_a \sim 0 \) in \((O \cdot H) \cap V \).

At this point, we have shown, by Lemmas 8 and 9, that \(H \) has the local properties of a generalized manifold. To complete the proof it only remains to show that \(H \) is orientable, that is, that it carries an \((n-1)\)-cycle which is not carried by any proper closed subset of \(H \).

By Lemma 8, there are neighborhoods \(O_1 \) and \(O_2 \) of \(e \) such that there is an \((n-1)\)-cycle mod \(H - O_1 \) which does not bound mod \(H - O_2 \). By group translation, every point of \(H \) has associated with it such a non-bounding relative \((n-1)\)-cycle. Now an argument due to Smith [5] shows that we can carry through in the present situation the proof of Theorem 7.1 of [1] to obtain the desired \((n-1)\)-cycle.

In conclusion, we point out that by restricting \(G \), we can lighten the hypothesis on \(H \).

Theorem. Let \(G \) be a locally compact separable metric topological group which is also an orientable \(n \)-dimensional generalized manifold. Let \(H \) be a closed connected \((n-1)\)-dimensional subgroup. Then \(H \) is an orientable generalized manifold if any one of the following conditions is satisfied:

1. \(H \) separates some open set of \(G \).
2. For some open set \(O \) of \(H \), there is a nonbounding \((n-1)\)-cycle of \(H \) mod \(H - O \).
3. \(G \) is locally euclidean.

The Pontrjagin duality theorem for case (3) and Theorem 6.5 of [2] for case (2) show that both (3) and (2) imply (1). Now the proof of Lemma 1 of [4] shows that (1) yields a neighborhood of \(H \) which
is separated by H, that is, our Lemma 4. Since this is the only place in our proof where the original hypothesis on H is used, the rest of the proof can remain unchanged.

In case (3), if $\dim G = 3$, we have Montgomery's theorem, for any 2-dimensional generalized manifold is locally euclidean [8].

BIBLIOGRAPHY

Yale University