A PROPERTY OF POWER SERIES WITH
POSITIVE COEFFICIENTS
P. ERDŐS, W. FELLER, AND H. POLLARD

The following theorem is suggested by a problem in the theory of
probability.¹

Let \(\rho_k \) be a sequence of non-negative numbers for which \(\sum_0^\infty \rho_k = 1 \),
and let \(m = \sum_1^\infty k\rho_k \leq \infty \). Suppose further that

\[
P(x) = \sum_0^\infty \rho_k x^k
\]

is not a power series in \(x \) for any integer \(t > 1 \). Then \(1 - P(x) \) has no
zeros in the circle \(|x| < 1 \), and the series

\[
U(x) = \frac{1}{1 - P(x)} = \sum_0^\infty u_k x^k
\]

has the property

\[
\lim_{n \to \infty} u_n = 1/m.
\]

(If \(m = \infty \), we define \(1/m \) to be zero.)

We shall first give a proof in case \(m < \infty \). The method used is not
elementary, but yields somewhat more information than stated in the
theorem. Later in this paper an elementary proof is given, valid for
both \(m < \infty \) and \(m = \infty \).

We suppose that \(m < \infty \). Let

\[
(1) \quad r_n = \sum_{k=n+1}^\infty \rho_k, \quad R(x) = \sum_0^\infty r_n x^n.
\]

Then \(m = \sum_0^\infty r_k \) and

\[
(2) \quad 1 - P(x) = (1 - x)R(x).
\]

Since \(m < \infty \) the power series for \(R(x) \) converges absolutely and
uniformly in \(|x| \leq 1 \). We claim that \(R(x) \) has no zeros for \(|x| \leq 1 \).
For \(|x| < 1 \) this is clear from (2), since \(P(x) \) has positive coefficients

¹ To be published elsewhere. The theorem and method of the present paper
were extended to the continuous case by D. Blackwell, A renewal theorem, Duke
Math. J. vol. 15 (1948) pp. 145–150. This research originated from work under an
ONR contract at Cornell University.

Received by the editors March 1, 1948.
and therefore \(|P(x)| < 1\), for \(|x| < 1\). Then any zeros of \(R(x) \) must occur on the circle \(|x| = 1\). From (1) it follows that \(R(1) = m \neq 0\). Hence any zero must be of the form \(x_0 = e^{i\theta_0}, 0 < \theta_0 < 2\pi\). If \(R(x_0) = 0\), then (2) implies \(P(e^{i\theta_0}) = 1\). Since \(p_k \geq 0\) this can happen only if \(\cos \theta_0 k = 1\) for all \(k \) for which \(p_k \neq 0\). But this is impossible because \(P(x) \) would be a power series in \(x^t \), for some integer \(t > 1\).

Then the function

\[
\frac{1 - x}{1 - P(x)} = \frac{1}{R(x)}
\]

has no singularities in \(|x| < 1\) and we can expand it in a power series

\[
R(x) = \sum_{n=0}^{\infty} a_n x^n,
\]

where

\[
a_n = \frac{1}{2\pi i} \int_{|z|=r} \frac{x^{-n-1}}{R(z)} \frac{dz}{R(z)}, \quad r < 1.
\]

Now \([R(x)]^{-1} \) is bounded in \(|x| < 1\); therefore we can apply Lebesgue's convergence theorem to let \(r \to 1\); we obtain

\[
a_n = \frac{1}{2\pi i} \int_{|z|=1} \frac{x^{-n-1}}{R(x)} dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{-in\theta}}{R(e^{i\theta})} d\theta,
\]

for \(n = 0, 1, \ldots \).

But we have already seen that

\[
R(e^{i\theta}) = \sum_{n=0}^{\infty} r_n e^{i\theta n}
\]

converges absolutely and has no zeros. It follows by a theorem of Wiener \(^1\) that \([R(e^{i\theta})]^{-1} \) has an absolutely convergent expansion

\[
\frac{1}{R(e^{i\theta})} = \sum_{n=-\infty}^{\infty} b_n e^{in\theta},
\]

where \(\sum |b_n| < \infty \) and

\[
b_n = \int_{-\pi}^{\pi} \frac{e^{-in\theta}}{R(e^{i\theta})} d\theta, \quad -\infty < n < \infty.
\]

A comparison of this and (4) shows that \(\sum |a_n| < \infty \). From (3) we

can conclude that \(\sum a_n = m^{-1} \). But
\[
\sum_{n=0}^{\infty} a_n x^n = (1 - x) \sum_{k=0}^{\infty} u_k x^k.
\]
It follows from Abel's theorem that \(u_k \to 1/m \).

This argument does not work in the case \(m = \infty \) since then \(R(x) \)

is not bounded. The following proof is quite elementary and does not
distinguish between the two cases.

Clearly
\[
u_n = \rho_0 u_n + \rho_1 u_{n-1} + \cdots + \rho_{n-1} u_1 + \rho_n u_0, \quad n \geq 1.
\]
Moreover, since \(R(x) U(x) = (1 - x)^{-1} \), we have
\[
r_0 u_n + r_1 u_{n-1} + \cdots + r_{n-1} u_1 + r_n u_0 = 1.
\]

Let
\[
\lambda = \limsup u_n,
\]
and let \(\{n_\nu\} \) be a sequence such that \(u_{n_\nu} \to \lambda \). We claim that for any
fixed \(j > 0 \) for which \(\rho_j > 0 \) we have \(u_{n_\nu - j} \to \lambda \). In fact, assume that
\(u_{n_\nu - j} \to \lambda' < \lambda \). Then for sufficiently large \(\nu \)
\[
\lambda - \epsilon < u_{n_\nu} < (\rho_0 + \cdots + \rho_{j-1} + \rho_j + \cdots + \rho_\nu)(\lambda + \epsilon) + \rho_j \lambda' + \epsilon
\]
\[
\leq (1 - \rho_j)(\lambda + \epsilon) + \rho_j \lambda' + \epsilon < \lambda - \rho_j(\lambda - \lambda') + 2\epsilon
\]
whence \(\lambda' = \lambda \).

Repeating the same argument, we see that
\[
\lim_{\nu \to \infty} u_{n_\nu - sj} = \lambda
\]
for every fixed integer \(j \geq 0 \), provided only that \(u_{n_\nu} \to \lambda \) and \(\rho_j > 0 \).

Now consider the set of all integers \(j \) for which \(\rho_j > 0 \). By hypothesis,
their greatest common divisor is 1. We can, therefore, find a \textit{finite}
collection \(a_1, a_2, \cdots, a_t \) of subscripts such that \(\rho_{a_1} > 0, \cdots, \rho_{a_t} > 0 \)
and that their greatest common divisor is 1. Then by (5)
\[
\lim_{\nu \to \infty} u_{n_\nu - k} = \lambda
\]
for every fixed integer \(k \) of the form
\[
k = x_1 a_1 + x_2 a_2 + \cdots + x_t a_t.
\]
However, \textit{every} integer \(k > a_1 a_2 \cdots a_t \) can be put into the form (7)
and hence (6) holds for every sufficiently large fixed k. Now put in
(5) $n=N_*-n_*-a_1a_2\cdots a_t$. Then for every fixed M

$$1 \geq r_0u_{N_*} + r_1u_{N_*-1} + \cdots + r_Mu_{N_*-M}.$$

As $v \to \infty$ all terms $u_{N_*-k} \to 0$ and hence

$$1 \geq \lambda(r_0 + r_1 + \cdots + r_M)$$

or $\lambda \leq 1/m$ (with $\lambda = 0$ if $\sum r_n = \infty$).

If $m < \infty$ we can use a similar argument for $\mu = \lim inf u_n$ to show
that $\mu \geq 1/m$. This proves the theorem.

\textbf{Syracuse University and Cornell University}

\section*{A CONSISTENCY THEOREM}

\textbf{H. D. BRUNK1}

1. Introduction. Of primary importance in a theory of representa-
tion of functions by series which do not necessarily converge is its
consistency theorem, which states that if a series which represents a
function F converges to a function Φ, then $F \equiv \Phi$. Such a theorem for
asymptotic representation in a strip region of a function by Dirichlet
series with a certain logarithmic precision, an idea introduced by
Mandelbrojt \cite{1},2 is the subject matter of this note. From it follow
similar theorems for less general extensions of the idea of asymptotic
series. The method consists in using the proof of the fundamental
theorem in \cite{1} to set up a homogeneous linear differential equation
of infinite order with constant coefficients, which must be satisfied
by the difference $F-\Phi$; then applying a method of Ritt to show that
the only solution is identically zero.

The notation used by Mandelbrojt in \cite{1} will be used here also.
Let $\{\lambda_n\}$ be an increasing sequence of positive numbers ($0 < \lambda_n \uparrow$).
Denote by $N(\lambda)$, defined for $\lambda > 0$, the distribution function of \{\lambda_n\};
that is, the number of terms in the sequence \{\lambda_n\} less than λ; and
by $D(\lambda)$ the density function of \{\lambda_n\}: $D(\lambda) = N(\lambda)/\lambda$. Let D'
represent the upper density: $D' = \lim sup_{\lambda \to \infty} D(\lambda)$; and $D'(\lambda)$ the upper density
function of \{\lambda_n\}: $D'(\lambda) = \lim \sup_{x \geq \lambda} D(x)$; clearly $D'(\lambda)$ is continuous
and decreases to D' (unless $D'(\lambda) \equiv D' = \infty$).

1 The author is indebted to Professor Mandelbrojt for suggesting the problem
considered in this note.

2 Numbers in brackets refer to the bibliography at the end of the paper.