Convergence of continued fractions in parabolic domains
Author:
H. S. Wall
Journal:
Bull. Amer. Math. Soc. 55 (1949), 391394
MathSciNet review:
0028976
Fulltext PDF
References 
Additional Information
 1.
Joseph
J. Dennis and H.
S. Wall, The limitcircle case for a positive definite
𝐽fraction, Duke Math. J. 12 (1945),
255–273. MR 0013436
(7,153c)
 2.
E.
D. Hellinger and H.
S. Wall, Contributions to the analytic theory of continued
fractions and infinite matrices, Ann. of Math. (2) 44
(1943), 103–127. MR 0008102
(4,244f)
 3.
J.
Findlay Paydon and H.
S. Wall, The continued fraction as a sequence of linear
transformations, Duke Math. J. 9 (1942),
360–372. MR 0006386
(3,297d)
 4.
W.
T. Scott and H.
S. Wall, A convergence theorem for continued
fractions, Trans. Amer. Math. Soc. 47 (1940), 155–172. MR 0001320
(1,217d), http://dx.doi.org/10.1090/S00029947194000013201
 5.
W.
T. Scott and H.
S. Wall, On the convergence and divergence of continued
fractions, Amer. J. Math. 69 (1947), 551–561.
MR
0021137 (9,28c)
 6.
T. J. Stieltjes, Recherches sur les fractions continues, Oeuvres, vol. 2, pp. 402566.
 7.
H.
S. Wall and Marion
Wetzel, Quadratic forms and convergence regions for continued
fractions, Duke Math. J. 11 (1944), 89–102. MR 0011340
(6,151b)
 8.
E. B. Van Vleck, On the convergence of continued fractions with complex elements, Trans. Amer. Math. Soc. vol. 2 (1901) pp. 205233.
 1.
 J. J. Dennis and H. S. Wall, The limitcircle case for a positive definite Jfraction, Duke Math. J. vol. 12 (1945) pp. 255273. MR 13436
 2.
 E. Hellinger and H. S. Wall, Contributions to the analytic theory of continued fractions and infinite matrices, Ann. of Math. (2) vol. 44 (1943) pp. 103127. MR 8102
 3.
 J. F. Paydon and H. S. Wall, The continued fraction as a sequence of linear transformations, Duke Math. J. vol. 9 (1942) pp. 360372. MR 6386
 4.
 W. T. Scott and H. S. Wall, A convergence theorem for continued fractions, Trans. Amer. Math. Soc. vol. 47 (1940) pp. 155172. MR 1320
 5.
 W. T. Scott and H. S. Wall, On the convergence and divergence of continued fractions, Amer. J. Math. vol. 69 (1947) pp. 551561. MR 21137
 6.
 T. J. Stieltjes, Recherches sur les fractions continues, Oeuvres, vol. 2, pp. 402566.
 7.
 H. S. Wall and Marion Wetzel, Quadratic forms and convergence regions for continued fractions, Duke Math. J. vol. 11 (1944) pp. 89102. MR 11340
 8.
 E. B. Van Vleck, On the convergence of continued fractions with complex elements, Trans. Amer. Math. Soc. vol. 2 (1901) pp. 205233.
Additional Information
DOI:
http://dx.doi.org/10.1090/S000299041949092200
PII:
S 00029904(1949)092200
