ON A PROBLEM OF MAX A. ZORN

RIMHAK REE

1. Introduction. Max A. Zorn has proved the following theorem.

Theorem. If every substitution $x = at$, $y = bt$ in which a and b are complex numbers transforms $\sum a_i x^i y^j$ into a power series with a non-vanishing radius of convergence, the series $\sum |a_i x^i y^j|$ converges for sufficiently small $|x|$ and $|y|$.

He has also suggested the following problem. If $X^a x^a y^b$ is a power series which is transformed by every substitution of convergent power series $\sum a_i x^i$ and $\sum b_i y^j$ with real coefficients for x and y into a convergent power series in t, is the double series $\sum a_i x^i y^j$ convergent?

The answer is yes. In fact, Zorn’s theorem itself holds even when the coefficients a and b are restricted to take only real values. We can obtain a proof quite directly by Zorn’s method, if we use an estimate for the coefficients of homogeneous polynomials in real variables.

2. Homogeneous polynomials in real variables. We shall prove a lemma which may easily be extended to the case of many variables.

Lemma. Let $P(x, y) = \sum_{i+j=n} a_{ij} x^i y^j$ be a homogeneous polynomial in real variables. If $|P(x, y)| \leq M$ for $|x - x_0| \leq 2\delta$, $|y - y_0| \leq 2\epsilon$, then $|a_{ij} x^i y^j| \leq M$.

Proof. Set $x = x_0 + \delta (\xi + \xi^{-1})$. Then $\xi^n P(x, y) = \sum a_{ij} \xi^i (\xi x)^j y^j$ is a polynomial in ξ whose absolute value does not exceed M when ξ moves on the unit circle of the Gaussian plane. By Cauchy’s inequality of function theory, and considering the coefficients of ξ^k in $\xi^n P(x, y)$, we have

$$\left| \sum_{j=0}^{k} a_{ij} x^{i} y^{j} \right| \leq M,$$

where $0 \leq k \leq n$, $i + j = n$, and c_i is the coefficient of ξ^{k-i} in $(\xi x)^i$.

Again set $y = y_0 + \epsilon (\eta + \eta^{-1})$ and apply the Cauchy inequality to the constant term of $\eta^k \sum_{j=0}^{k} a_{ij} c_i x^j y^j$. We have

$$|a_{lk} x^k| \leq M,$$

where $l + k = n$ and c_l equals δ^l by definition. This completes our proof.

Received by the editors May 10, 1948.

3. **Proof of Zorn’s theorem in the real case.** Now we can follow Zorn’s method directly.

Proof. Let \(P_n(x, y) = \sum_{i+j=n} a_{ij} x^i y^j \). The set \(D \) of vectors \((x, y) \) for which \(\sum P_n(x, y) \) converges is of the second category. For every vector is in \(mD \) for some positive integer \(m \). If \(D \) were of the first category, the set \(mD \) and therefore the two-dimensional Euclidean space would be the same character.

By virtue of the continuity of the functions \(P_n \) there will exist a square \(|x-x_0| \leq 2p, \quad |y-y_0| \leq 2p, \quad p > 0 \) and an \(M \) such that \(|P_n(x, y)| \leq M \) holds in the square for all \(n \). Then by our lemma \(|a_{ij} b^{i+j}| \leq M \). Hence for \(|x|, |y| \leq p/2 \), we have

\[
|a_{ij} x^i y^j| \leq M/2^{i+j}
\]

which establishes the absolute convergence of the double series.

Seoul University, Korea

\(mD \) is the set of \((mx, my) \) where \((x, y) \subseteq D \).