A BOUND FOR THE MEAN VALUE OF A FUNCTION

J. ERNEST WILKINS, JR.

Let \(f(t) \) be a bounded measurable function defined when \(0 \leq t \leq \pi \). The Fourier sine series associated with \(f(t) \) is

\[
\sum_{n=1}^{\infty} b_n \sin nt, \quad b_n = \frac{2}{\pi} \int_{0}^{\pi} f(t) \sin nt \, dt.
\]

We shall be interested in this paper in establishing a bound for the mean value

\[
a = \frac{1}{\pi} \int_{0}^{\pi} f(t) \, dt
\]

when \(f(t) \) is such that one of the coefficients \(b_n \) vanishes.

We can suppose without essential loss of generality that \(|f(t)| \leq 1 \). Since \(b_{2n} = 0 \) whenever \(f(t) \) is constant, it is clear that the only conclusion on \(a \) that can be drawn from the inequality \(|f(t)| \leq 1 \) and the equality \(b_{2n} = 0 \) is that \(|a| \leq 1 \), and this conclusion is valid whether \(b_{2n} \) vanishes or not. Hence we shall restrict attention to \(b_{2n+1} \). For the same reason we shall not discuss the vanishing of the coefficient

\[
a_n = \frac{2}{\pi} \int_{0}^{\pi} f(t) \cos nt \, dt
\]

of the Fourier cosine series of \(f(t) \).

Suppose that \(b_{2n+1} \neq 0 \). Define a positive number \(y \) by the equation

\[
y = \sin^{-1} \left(\sec^{-1} \left(\frac{2\phi + 1}{2n+1} \right) \right)
\]

where the \(\sec^{-1} \) lies between 0 and \(\pi/2 \). Let \(E \) be the sum of the intervals

\[
\frac{2\phi \pi + \sin^{-1} y}{2n+1} \leq t \leq \frac{(2\phi + 1)\pi - \sin^{-1} y}{2n+1} \quad (\phi = 0, 1, \ldots, n),
\]

where the \(\sin^{-1} \) lies between 0 and \(\pi/2 \). Then it is clear that

\[
\sin (2n + 1)t \geq y \quad \text{if } t \text{ is in } E,
\]

\[
\sin (2n + 1)t < y \quad \text{if } t \text{ is not in } E.
\]

Received by the editors February 11, 1948, and, in revised form, June 14, 1948.

1 The importance of the concept of mean value in the study of Fourier series can be seen by consulting Bohr [1, pp. 7–29]. Numbers in brackets refer to the bibliography at the end of the paper.

801
Now let \(f_0(t) = -1 \) if \(t \) is in \(E \) and \(f_0(t) = +1 \) if \(t \) is not in \(E \). It follows from the definitions of \(y \) and \(E \) that

\[
\int_0^\infty f_0(t) \sin (2n + 1)t \, dt = 0,
\]

and that the mean value of \(f_0(t) \) is

\[
a_0 = 1 - \frac{2}{\pi} \text{meas } E = \left[\frac{4(n + 1)}{(2n + 1)\pi} \right] \sec^{-1} \left(\frac{2n + 2}{2n + 1} \right).
\]

We shall now prove that if \(f(t) \) is an arbitrary real-valued measurable function such that \(|f(t)| \leq 1 \) and \(b_{2n+1} = 0 \), then \(|a| \leq a_0 \). Let \(g(t) = f(t) - f_0(t) \). Then \(0 \leq g(t) \) on \(E \) and \(0 \geq g(t) \) on the complement \(cE \) of \(E \). By virtue of relations (1) we conclude that

\[
\int_E g(t) \sin (2n + 1)t \, dt \geq y \int_E g(t) \, dt,
\]

\[
\int_{cE} g(t) \sin (2n + 1)t \, dt \geq y \int_{cE} g(t) \, dt.
\]

Adding and remembering that \(b_{2n+1} = 0 \) for both \(f \) and \(f_0 \) we see that

\[
0 \geq y \int_0^\infty g(t) \, dt,
\]

with equality if and only if \(g(t) = 0 \) almost everywhere. Since \(y > 0 \), we have that

\[
\int_0^\infty f(t) \, dt \leq \int_0^\infty f_0(t) \, dt,
\]

with equality if and only if \(f(t) = f_0(t) \) almost everywhere.

Now let \(h(t) = f(t) + f_0(t) \). Then \(0 \leq h(t) \) on \(E \), \(0 \leq h(t) \) on \(cE \), and so

\[
\int_E h(t) \sin (2n + 1)t \, dt \leq y \int_E h(t) \, dt,
\]

\[
\int_{cE} h(t) \sin (2n + 1)t \, dt \leq y \int_{cE} h(t) \, dt,
\]

\[
0 \leq y \int_0^\infty h(t) \, dt,
\]

\[
-\int_0^\infty f(t) \, dt \leq \int_0^\infty f_0(t) \, dt,
\]

(3)
with equality if and only if \(f(t) = -f_0(t) \) almost everywhere. Combining the inequalities (2) and (3) we conclude that when \(f(t) \) is a real-valued measurable function such that \(|f(t)| \leq 1 \) and \(b_{2n+1} = 0 \), then

\[
|a| = \left| \frac{1}{\pi} \int_0^\pi f(t)dt \right| \leq \frac{4(n+1)}{(2n+1)\pi} \sec^{-1}(2n+2) - \frac{1}{2n+1},
\]

with equality if and only if \(f(t) = \pm f_0(t) \) almost everywhere.

In particular, if \(b_1 = 0 \), then \(|a| \leq 1/3 = .3333 \), while if \(b_2 = 0 \), then \(|a| \leq .7855 \). The right-hand side of the inequality (4) approaches unity as \(n \) approaches infinity.

This conclusion may be extended to complex functions \(f(t) \) as follows. Let \(f(t) = f_1(t) + if_2(t) \), where \(f_1(t) \) and \(f_2(t) \) are real. There exist real numbers \(x \) and \(y \) such that

\[
x^2 + y^2 = 1, \quad x \int_0^\pi f_2(t)dt + y \int_0^\pi f_1(t)dt = 0.
\]

Hence it is true that the mean value of \(f(t) \) has the same absolute value as the mean value of the real function \(xf_1(t) - yf_2(t) \). This real function has a Fourier coefficient \(b_{2n+1} \) equal to zero since this is true for both \(f_1(t) \) and \(f_2(t) \) and is bounded by one since \(f(t) \) is and \(x^2 + y^2 = 1 \). Since the inequality (4) is valid for \(xf_1 - yf_2 \), it is therefore true for \(f(t) \). Moreover since equality for \(xf_1 - yf_2 \) implies that \(xf_1 - yf_2 = \pm f_0(t) \), equality for \(f(t) \) implies that \(f(t) = cf_0(t) \) where \(c \) is a constant of absolute value unity.

Bibliography