AN INEQUALITY RELATED TO THE ISOPERIMETRIC INEQUALITY

L. H. LOOMIS AND H. WHITNEY

In this note we shall prove the following theorem.

Theorem 1. Let \(m \) be the measure of an open subset \(O \) of Euclidean \(n \)-space, and let \(m_1, \ldots, m_n \) be the \((n-1) \)-dimensional measures of the projections of \(O \) on the coordinate hyperplanes. Then

\[
m^{n-1} \leq m_1m_2 \cdots m_n.
\]

Note that for \(n \)-dimensional intervals with faces parallel to the coordinate hyperplanes, (1) holds with the equality sign.

With any reasonable definition of the \((n-1) \)-dimensional measure \(s \) of the boundary of \(O \), \(s \geq 2m_i \) for each \(i \), so that (1) gives

\[
m^{n-1} \leq s^n/2^n;
\]

this is the isoperimetric inequality, without the best constant. Since the proof of the isoperimetric inequality with the best constant is difficult,\(^1\) and since its applications do not necessarily require the best constant, our elementary proof of the theorem may be of some interest.

We first reduce the problem to a combinatorial one, in the following theorem.

Theorem 2. Let \(S \) be a set of cubes from a cubical subdivision of \(n \)-space; let \(S_i \) be the set of \((n-1) \)-cubes obtained by projecting the cubes of \(S \) onto the \(i \)th coordinate hyperplane. Let \(N \) and \(N_i \) be the numbers of cubes in \(S \) and \(S_i \) respectively. Then

\[
N^{n-1} \leq N_1N_2 \cdots N_n.
\]

Assuming Theorem 2, we prove Theorem 1 as follows. Given \(\epsilon > 0 \), choose a cubical subdivision of \(n \)-space into cubes of side \(\delta \), with \(\delta \) so small that if \(S \) is the set of cubes interior to \(O \) forming the set \(\overline{S} \), \(\mu(O - \overline{S}) < \epsilon \) (\(\mu \) = measure). Then

\[
[\mu(\overline{S})]^{n-1} = N^{n-1}\delta^{n(n-1)} \leq (N_1\delta^{n-1}) \cdots (N_n\delta^{n-1}) \leq m_1 \cdots m_n,
\]

and since \(\epsilon \) is arbitrary, (1) follows.

Proof of Theorem 2. If \(n = 2 \), the theorem is clear; we shall use induction on \(n \). Each cube of \(S \) projects into an interval on the first coordinate axis; let \(I_1, \ldots, I_k \) be the intervals thus obtained. Let \(T_i \) be the set of cubes projecting onto \(I_i \), and let \(T_{ij} \) be the set of \((n-1)\)-cubes obtained by projecting the cubes of \(T_i \) into the \(j \)th coordinate hyperplane \((j = 2, \ldots, n)\). Let \(a_i \) and \(a_{ij} \) be the numbers of cubes in \(T_i \) and \(T_{ij} \), respectively. Clearly

\[
\sum_{i=1}^{k} a_i = N, \quad a_i \leq N_1 \quad (i = 1, \ldots, k),
\]

\[
\sum_{i=1}^{k} a_{ij} = N_j \quad (j = 2, \ldots, n).
\]

Also, by induction,

\[
a_i^{n-2} \leq a_{i_1} \cdots a_{i_n} \quad (i = 1, \ldots, k).
\]

From (6) and the second part of (4) we obtain

\[
a_i^{n-1} \leq N_1 a_{i_2} \cdots a_{i_n} \quad (i = 1, \ldots, k).
\]

Now using successively the first part of (4), the above inequality, Hölder's inequality, and (5), we see that

\[
N = \sum_{i=1}^{k} a_i \leq \sum_{i=1}^{k} N_1^{1/(n-1)} \prod_{j=2}^{n} a_{ij}^{1/(n-1)}
\]

\[
\leq N_1^{1/(n-1)} \prod_{j=2}^{k} \left(\sum_{i=1}^{m} a_{ij} \right)^{1/(n-1)} = \prod_{j=1}^{n} N_j^{1/(n-1)},
\]

as required.

Harvard University

\(^2\) The authors are indebted to M. R. Demers for a simplification in the proof of this theorem.