Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

Self-dual configurations and regular graphs


Author: H. S. M. Coxeter
Journal: Bull. Amer. Math. Soc. 56 (1950), 413-455
DOI: https://doi.org/10.1090/S0002-9904-1950-09407-5
MathSciNet review: 0038078
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. H. F. Baker, Principles of geometry, vol. 1, 2d ed., Cambridge, 1929.
    1a. H. F. Baker, ibid, vol. 3, Cambridge, 1934.

  • 2. H. F. Baker, Note to the preceding paper by C. V. H. Rao, Proc. Cambridge Philos. Soc. 42 (1946), 226–229. MR 0019323
  • 3. Gaston Benneton, Configurations harmoniques et quaternions, Ann. Sci. École Norm. Sup. (3) 64 (1947), 1–58 (French). MR 0023537
  • 4. Wilhelm Blaschke, Projektive Geometrie, Wolfenbütteler Verlagsanstalt, Wolfenbüttel-Hannover, 1947 (German). MR 0025741
  • 5. W. Blaschke and G. Bol, Geometrie der Gewebe, Berlin, 1938.
  • 6. R. C. Bose, An affine analogue of Singer’s theorem, J. Indian Math. Soc. (N.S.) 6 (1942), 1–15. MR 0006735
  • 7. H. R. Brahana, Regular Maps and Their Groups, Amer. J. Math. 49 (1927), no. 2, 268–284. MR 1506619, https://doi.org/10.2307/2370756
  • 8. W. Burnside, Theory of groups of finite order, Dover Publications, Inc., New York, 1955. 2d ed. MR 0069818
  • 9. A. Cayley, Sur quelques théorèmes de la géométrie de position(1846), Collected Mathematical Papers, vol. 1, 1889, pp. 317-328.
  • 10. H. Cox, Application of Grassmann's Ausdehnungslehre to properties of circles, Quart. J. Math. vol. 25 (1891) pp. 1-71.
  • 11. H. S. M. Coxeter, Regular skew polyhedra in three and four dimensions, Proc. London Math. Soc. (2) vol. 43 (1937) pp. 33-62.
  • 12. H. S. M. Coxeter, Regular polytopes, London, 1948.
  • 13. H. S. M. Coxeter, Configurations and maps, Rep. Math. Colloquium (2) 8 (1949), 18–38. MR 0029494
  • 14. H. S. M. Coxeter, The Real Projective Plane, McGraw-Hill Book Company, Inc., New York, N. Y., 1949. MR 0030205
  • 15. L. Cremona, Teoremi stereometrici, dei quali si deducono le proprietà dell'esagrammo di Pascal, Memorie della Reale Accademia dei Lincei vol. 1 (1877) pp. 854-874.
  • 16. P. Du Val, On the directrices of a set of points in a plane, Proc. London Math. Soc. (2) vol. 35 (1933) pp. 23-74.
  • 17. J. M. Feld, Configurations Inscriptible in a Plane Cubic Curve, Amer. Math. Monthly 43 (1936), no. 9, 549–555. MR 1523764, https://doi.org/10.2307/2301402
  • 18. R. M. Foster, Geometrical circuits of electrical networks, Transactions of the American Institute of Electrical Engineers vol. 51 (1932) pp. 309-317.
  • 19. R. Frucht, Die Gruppe des Petersen'schen Graphen und der Kantensysteme der regulären Polyeder, Comment. Math. Helv. vol. 9 (1937) pp. 217-223.
  • 20. G. Gallucci, Studio della figura delle otto rette e sue applicazioni alla geometria del tetraedro ed alla teoria della configurazioni, Rendiconto dell'Accademia delle Scienze fisiche e matematiche (Sezione della Società reale di Napoli) (3) vol. 12 (1906) pp. 49-79.
  • 21. P. J. Heawood, Map-colour theorem, Quart. J. Math. vol. 24 (1890) pp. 332-338.
  • 22. L. Henneberg, Die graphische Statik der starren Körper, Encyklopädie der Mathematischen Wissenschaften vol. 4.1 (1908) pp. 345-434.
  • 23. E. Hess, Weitere Beiträge zur Theorie der räumlichen Configurationen, Verhandlungen den K. Leopoldinisch-Carolinischen Deutschen Akademie Naturforscher vol. 75 (1899) pp. 1-482.
  • 24. W. V. D. Hodge and D. Pedoe, Methods of Algebraic Geometry. Vol. I, Cambridge, at the University Press; New York, The Macmillan Company, 1947. MR 0028055
  • 25. R. W. H. T. Hudson, Kummer's quartic surface, Cambridge, 1905.
  • 26. S. Kantor, Über die Configurationen (3, 3) mit den Indices 8, 9 und ihren Zusammenhang mit den Curven dritter Ordnung, Sitzungsberichte der Mathematisch-Naturwissenschaftliche Classe der K. Akademie der Wissenschaften, Wien vol. 84.1 (1882) pp. 915-932.
  • 27. S. Kantor, Die Configurationen (3, 3)10, ibid. pp. 1291-1314.
  • 28. D. König, Theorie der endlichen und unendlichen Graphen, Leipzig, 1936.
  • 29. Karl Kommerell, Die Pascalsche Konfiguration 9₃, Deutsche Math. 6 (1941), 16–32 (German). MR 0005630
  • 30. A. Kowalewski, W. R. Hamilton's Dodekaederaufgabe als Buntordnungsproblem, Sitzungsberichte der Mathematisch-Naturwissenschaftliche Klasse der K. Akademie der Wissenschaften, Wien vol. 126.2a (1917) pp. 67-90.
  • 31. F. W. Levi, Geometrische Konfigurationen, Leipzig, 1929.
  • 32. F. W. Levi, Finite Geometrical Systems, University of Calcutta, Calcutta, 1942. MR 0006834
  • 33. V. Martinetti, Sopra alcune configurazioni piane, Annali di Matematica (2) vol. 14 (1887) pp. 161-192.
    33a. V. Martinetti, Sulle configurazioni piane μ, Annali di Matematica (2) vol. 15 (1888) pp. 1-26.

  • 34. V. Martinetti, Alcune considerazioni sulla configurazione di Kummer, Rend. Circ. Mat. Palermo vol. 16 (1902) pp. 196-203.
  • 35. G. A. Miller, H. F. Blichfeldt, and L. E. Dickson, Theory and applications of finite groups, New York, 1916.
  • 36. A. F. Möbius, Kann von zwei dreiseitigen Pyramiden eine jede in Bezug auf die andere um- und eingeschrieben zugleich heissen? (1828), Gesammelte Werke, vol. 1, 1886, pp. 439-446.
  • 37. F. Morley and F. V. Morley, Inversive geometry, Boston, 1933.
  • 38. J. Petersen, Les 36 officiers, Annuaire des Mathématiciens (1902) pp. 413-427.
  • 39. Herbert W. Richmond, On a chain of theorems due to Homersham Cox, J. London Math. Soc. 16 (1941), 105–107. MR 0004964, https://doi.org/10.1112/jlms/s1-16.2.105
  • 40. G. de B. Robinson, On the orthogonal groups in four dimensions, Proc. Cambridge Philos. Soc. vol. 27 (1931) pp. 37-48.
  • 41. A. Schönflies, Ueber die regelmässigen Configurationen 𝑛³, Math. Ann. 31 (1888), no. 1, 43–69 (German). MR 1510469, https://doi.org/10.1007/BF01204635
  • 42. James Singer, A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc. 43 (1938), no. 3, 377–385. MR 1501951, https://doi.org/10.1090/S0002-9947-1938-1501951-4
  • 43. D. M. Y. Sommerville, An introduction to the geometry of n dimensions, London, 1929.
  • 44. G. K. C. von Staudt, Geometrie der Lage, Nürnberg, 1847.
  • 45. C. Stephanos, Sur les systèmes desmiques de trois tétraèdres, Bull. Sci. Math. (2) vol. 3 (1879) pp. 424-456.
  • 46. W. Threlfall, Gruppenbilder, Abhandlungen der Mathematisch-Physischen Klasse der Sächsischen Akademie der Wissenschaften vol. 41.6 (1932) pp. 1-59.
  • 47. W. T. Tutte, A family of cubical graphs, Proc. Cambridge Philos. Soc. 43 (1947), 459–474. MR 0021678
  • 48. Oswald Veblen, Collineations in a finite projective geometry, Trans. Amer. Math. Soc. 8 (1907), no. 3, 366–368. MR 1500790, https://doi.org/10.1090/S0002-9947-1907-1500790-8
  • 49. O. Veblen and J. W. Young, Projective geometry, vol. 1, Boston, 1910.
  • 50. H. Whitney, Planar graphs, Fund. Math. vol. 21 (1933) pp. 73-84.
  • 51. Max Zacharias, Untersuchungen über ebene Konfigurationen (12₄,16₃), Deutsche Math. 6 (1941), 147–170 (German). MR 0017930


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1950-09407-5