Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Gradient mappings


Author: E. H. Rothe
Journal: Bull. Amer. Math. Soc. 59 (1953), 5-19
DOI: https://doi.org/10.1090/S0002-9904-1953-09649-5
MathSciNet review: 0052681
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. L. Alaoglu, Weak topologies of normed linear spaces, Ann. of Math. vol. 41 (1940) pp. 252-267. MR 1455
  • 2. P. Alexandroff and H. Hopf, Topologie, Berlin, 1935.
  • 3. N. Aronszajn, The Rayleigh-Ritz and the Weinstein methods for approximation of eigen-values, II: Differential operators, Technical Report 2, Oklahoma A. and M. College, Dept. of Math., Stillwater, Oklahoma, 1949.
  • 4. S. Banach, Théorie des opérations linéaires, Warsaw, 1932.
  • 5. E. S. Citlanadze, Certains problèmes de l'extrême relatif et de la théorie des valeurs caractéristiques, C. R. (Doklady) Acad. Sci. URSS. vol. 56 (1947) no. 1.
  • 6. E. S. Citlanadze, Some problems of non linear operators and the calculus of variations in spaces of Banach type, Uspehi Matematičeskih Nauk N.S. vol. 5 (1950) pp. 141-142 (Russian; reviewed in Mathematical Reviews vol. 12 (1951) p. 110). MR 36449
  • 7. R. Courant and D. Hilbert, Methoden der Mathematischen Physik, vol. 1, 2d ed., Berlin, 1931; vol. 2, Berlin, 1937.
  • 8. Kurt Friedrichs, Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren, Math. Ann. 109 (1934), no. 1, 465–487 (German). MR 1512905, https://doi.org/10.1007/BF01449150
  • 9. M. Golomb, Zur Theorie der nichtlinearen Integralgleichungen, Integralgleichungssysteme und allgemeinen Funktionalgleichungen, Math. Zeit. vol. 39 (1934) pp. 45-75.
  • 10. M. Golomb, Ueber Systeme von nichtlinearen Integralgleichungen, Publications Mathématiques de l'Université de Belgrade vol. 5 (1936) pp. 52-83.
  • 11. Lawrence M. Graves, Riemann integration and Taylor’s theorem in general analysis, Trans. Amer. Math. Soc. 29 (1927), no. 1, 163–177. MR 1501382, https://doi.org/10.1090/S0002-9947-1927-1501382-X
  • 12. A. Hammerstein, Nichtlineare Integralgleichungen und direkte Methoden der Variationsrechnung, Berliner Math. Ges. Sitzungsber. vol. 26 (1927) pp. 66-77.
  • 13. A. Hammerstein, Nichtlineare Integralgleichungen nebst Anwendungen, Acta Math. 54 (1930), no. 1, 117–176 (German). MR 1555304, https://doi.org/10.1007/BF02547519
  • 14. E. Hille, Functional analysis and semi-groups, Amer. Math. Soc. Colloquium Publications, vol. 31, 1948. MR 25077
  • 15. Michael Kerner, Die Differentiale in der allgemeinen Analysis, Ann. of Math. (2) 34 (1933), no. 3, 546–572 (German). MR 1503123, https://doi.org/10.2307/1968177
  • 16. J. Leray and M. Schauder, Topologie et équations fonctionelles, Ann. École Norm. (3) vol. 51 (1934) pp. 45-78.
  • 17. L. Lusternik, Sur une classe d'opérateurs non-linéaires dans l'espace de Hilbert, Bull. Acad. Sci. USSR. Sér. Math. (1939) pp. 257-264.
  • 18. Marston Morse, The calculus of variations in the large, American Mathematical Society Colloquium Publications, vol. 18, American Mathematical Society, Providence, RI, 1996. Reprint of the 1932 original. MR 1451874
  • 19. B. J. Pettis, A proof that every uniformly convex space is reflexive, Duke Math. J. 5 (1939), no. 2, 249–253. MR 1546121, https://doi.org/10.1215/S0012-7094-39-00522-3
  • 20. F. Riesz, Les systèmes d'équations linéaires a une infinité d'inconnues, Paris, 1913.
  • 21. E. H. Rothe, Zur Theorie der topologischen Ordnung und der Vektorfelder in Banachschen Raeumen, Compositio Math. vol. 5 (1937) pp. 177-197.
  • 22. E. H. Rothe, Gradient mappings in Hilbert space, Ann. of Math. vol. 47 (1946) pp. 580-592. MR 17469
  • 23. E. H. Rothe, Completely continuous scalars and variational methods, Ann. of Math. vol. 49 (1948) pp. 265-278. MR 28532
  • 24. E. H. Rothe, Gradient mappings and extrema in Banach spaces, Duke Math. J. vol. 15 (1948) pp. 421-431. MR 29104
  • 25. E. H. Rothe, Weak topology and non-linear integral equations, Trans. Amer. Math. Soc. vol. 66 (1949) pp. 75-79. MR 31650
  • 26. E. H. Rothe, Critical points and gradient fields of scalars in Hilbert space, Acta Math. vol. 85 (1951) pp. 73-98. MR 43387
  • 27. E. H. Rothe, A relation between the type numbers of a critical point and the index of the corresponding field of gradient vectors, Mathematische Nachrichten vol. 4 (1950/51) pp. 12-27. MR 40597
  • 28. E. H. Rothe, Leray-Schauder index and Morse type numbers in Hilbert space, Ann. of Math. vol. 55 (1952) pp. 433-467. MR 49493
  • 29. J. Schauder, Über lineare elliptische Differentialgleichungen zweiter Ordnung, Math. Z. 38 (1934), no. 1, 257–282 (German). MR 1545448, https://doi.org/10.1007/BF01170635
  • 30. W. Schmeidler, Integralgleichungen mit Anwendungen in Physik und Technik I, Akademische Verlagsgesellschaft, Leipzig, 1950. MR 44727
  • 31. H. Seiffert and W. Threlfall, Variationsrechnung im Grossen (Theorie von Marston Morse), Leipzig and Berlin, Teubner, 1938.
  • 32. V. T. Soboleff, Sur des éléments charactéristiques de certains opérateurs non linéaires, C. R. (Doklady) Acad. Sci. URSS vol. 31 (1941) pp. 735-737. MR 5789


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1953-09649-5

American Mathematical Society