Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

On smoothing operations and their generating functions


Author: I. J. Schoenberg
Journal: Bull. Amer. Math. Soc. 59 (1953), 199-230
DOI: https://doi.org/10.1090/S0002-9904-1953-09695-1
This work is cited by: Bull. Amer. Math. Soc., Volume 60, Number 5 (1954), 444--456
MathSciNet review: 0056042
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. E. Laguerre, Sur les fonctions de genre zéro et du genre un, C. R. Acad. Sci. Paris vol. 95 (1882) pp. 828-831 [also Oeuvres, vol. I, pp. 174-177].
  • 2. J. Hadamard, Essai sur l'étude des fonctions données par leur développement de Taylor, Journal de Mathématiques (4) vol. 8 (1892) pp. 101-186.
  • 3. A. Hurwitz, Sur le problème des isopérimetres, C. R. Acad. Sci. Paris vol. 132 (1901) pp. 401-403 [also Werke, vol. I, pp. 490-491].
  • 4. M. Fekete, Über ein Problem von Laguerre, Rendiconti di Palermo vol. 34 (1912) pp. 1-12.
  • 5. G. Pólya, Über Annäherung durch Polynome mit lauter reellen Wurzeln, Rendiconti di Palermo vol. 36 (1913) pp. 1-17.
  • 6. J. Grommer, Ganze transzendente Funktionen mit lauter reellen Nullstellen, Journal für Mathematik vol. 144 (1914) pp. 114-165.
  • 7. G. Pólya and I. Schur, Über zwei Arten von Faktorenfolgen in der Theorie der algebraischen Gleichungen, Journal für Mathematik vol. 144 (1914) pp. 89-113.
  • 8. G. Pólya, Algebraische Untersuchungen über ganze Funktionen vom geschlechte Null und Eins, Journal für Mathematik vol. 145 (1915) pp. 224-249.
  • 9. O. D. Kellogg, The Oscillations of Functions of an Orthogonal Set, Amer. J. Math. 38 (1916), no. 1, 1–5. MR 1506273, https://doi.org/10.2307/2370540
  • 10. O. D. Kellogg, Orthogonal Function Sets Arising from Integral Equations, Amer. J. Math. 40 (1918), no. 2, 145–154. MR 1506349, https://doi.org/10.2307/2370380
  • 11. O. D. Kellogg, Interpolation Properties of Orthogonal Sets of Solutions of Differential Equations, Amer. J. Math. 40 (1918), no. 3, 225–234. MR 1506356, https://doi.org/10.2307/2370481
  • 12. Hans Hamburger, Bemerkungen zu einer Fragestellung des Herrn Pólya, Math. Z. 7 (1920), no. 1-4, 302–322 (German). MR 1544422, https://doi.org/10.1007/BF01199401
  • 13. G. Pólya, On the mean-value theorem corresponding to a given linear homogeneous differential equation, Trans. Amer. Math. Soc. 24 (1922), no. 4, 312–324. MR 1501228, https://doi.org/10.1090/S0002-9947-1922-1501228-5
  • 14. G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, vol. II, Berlin, 1925.
  • 15. H. H. Wolfenden, On the development of formulae for graduation by linear compounding, with special reference to the work of Erastus L. De Forest, Transactions of the Acturial Society of America vol. 26 (1925) pp. 81-121.
  • 16. S. Bernstein, Leçons sur les propriétés extrémales des fonctions analytiques, Paris, 1926.
  • 17. E. T. Whittaker and G. Robinson, The calculus of observations, 2d ed., London and Glasgow, 1926.
  • 18. A. Marchaud, Sur les continus d’ordre borné, Acta Math. 55 (1930), no. 1, 67–115 (French). MR 1555315, https://doi.org/10.1007/BF02546510
  • 19. I. J. Schoenberg, Über variationsvermindernde lineare Transformationen, Math. Zeit. vol. 32 (1930) pp. 321-328.
  • 20. G. Pólya, Qualitatives über Wärmeausgleich, Zeitschrift für Angewandte Mathematik und Mechanik vol. 13 (1933) pp. 125-128.
  • 21. I. J. Schoenberg, Zur Abzählung der reellen Wurzeln algebraischer Gleichungen, Math. Z. 38 (1934), no. 1, 546–564 (German). MR 1545467, https://doi.org/10.1007/BF01170654
  • 22. T. S. Motzkin, Beiträge zur Theorie der linearen Ungleichungen, dissertation, Basel, 1933, Jerusalem, 1936.
  • 23. Aurel Wintner, On a Class of Fourier Transforms, Amer. J. Math. 58 (1936), no. 1, 45–90. MR 1507134, https://doi.org/10.2307/2371058
  • 24. F. Gantmakher and M. Krein, Sur les matrices complètement non négatives et oscillatoires, Compositio Math. 4 (1937), 445–476 (French). MR 1556987
  • 25. P. Scherk, Über differenzierbare Kurven und Bögen, Casopis pro pěstovani Matematiky a Fysiky vol. 66 (1937) pp. 165-191.
  • 26. G. B. Dantzig, On a class of distributions that approach the normal distribution function, Ann. Math. Statist, vol. 10 (1939) pp. 247-253. MR 119
  • 27. G. Pólya and N. Wiener, On the oscillation of the derivatives of a periodic function, Trans. Amer. Math. Soc. vol. 52 (1942) pp. 249-256. MR 7169
  • 28. O. Szász, On sequences of polynomials and the distribution of their zeros, Bull. Amer. Math. Soc. vol. 49 (1943) pp. 377-383. MR 8274
  • 29. T. N. E. Greville, The general theory of osculatory interpolation, Transactions of the Actuarial Society of America vol. 45 (1944) pp. 202-265. MR 12917
  • 30. H. Rademacher and I. J. Schoenberg, An iteration method for calculation with Laurent series, Quarterly of Applied Mathematics vol. 4 (1946) pp. 142-159. MR 16692
  • 31. I. J. Schoenberg, Contributions to the problem of approximation of equidistant data by analytic functions, Quarterly of Applied Mathematics vol. 4 (1946) Part A pp. 45-99, Part B, pp. 112-141.
  • 32. D. V. Widder, The Laplace transform, Princeton, 1946.
  • 33. H. B. Curry and I. J. Schoenberg, On Pólya frequency functions IV: The spline functions and their limits, as yet unpublished; see Bull. Amer. Math. Soc. Abstract 53-11-380.
  • 34. I. J. Schoenberg, On totally positive functions, Laplace integrals and entire functions of the Laguerre-Pólya-Schur type, Proc. Nat. Acad. Sci. U.S.A. vol. 33 (1947) pp. 11-17. MR 18706
  • 35. D. V. Widder, Inversion formulas for convolution transforms, Duke Math. J. vol. 14 (1947) pp. 217-249. MR 21622
  • 36. W. Feller, On the Kolmogorov-Smirnov limit theorems for empirical distributions, Ann. Math. Statist. vol. 19 (1948) pp. 177-189. MR 25108
  • 37. I. I. Hirschman and D. V. Widder, The inversion of convolution transform with totally positive kernels, Proc. Nat. Acad. Sci. U.S.A. vol. 34 (1948) pp. 152-156. MR 25617
  • 38. I. J. Schoenberg, Some analytical aspects of the problem of smoothing, Courant Anniversary volume "Studies and Essays," New York, 1948, pp. 351-370. MR 23309
  • 39. I. J. Schoenberg, On variation-diminishing integral operators of the convolution type, Proc. Nat. Acad. Sci. U.S.A. vol. 34 (1948) pp. 164-169. MR 23873
  • 40. I. I. Hirschman and D. V. Widder, The inversion of a general class of convolution transforms, Trans. Amer. Math. Soc. vol. 66 (1949) pp. 135-201. MR 32817
  • 41. I. I. Hirschman and D. V. Widder, A representation theory for a general class of convolution transforms, Trans. Amer. Math. Soc. vol. 67 (1949) pp. 69-97. MR 32818
  • 42. P. Laasonen, Einige Sätze über Tschebycheffsche Systeme, Ann. Acad. Sci. Fennicae, Ser. A. I. Math. Phys. no. 52, 24 pp., 1949. MR 31011
  • 43. I. J. Schoenberg and Anne Whitney, Sur la positivité des determinants de translations des fonctions de fréquence de Pólya . . . , C. R. Acad. Sci. Paris vol. 228 (1949) pp. 1996-1998. MR 31010
  • 44. F. Gantmakher and M. Krein, Oscillatory matrices and kernels and small vibrations of mechanical systems (in Russian), 2d ed., Moscow, 1950.
  • 45. I. I. Hirschman, Proof of a conjecture of I. J. Schoenberg, Proc. Amer. Math. Soc. vol. 1 (1950) pp. 63-65. MR 32705
  • 46. I. J. Schoenberg, On Pólya frequency functions II: Variation-diminishing integral operators of the convolution type, Acta Sci. Math. Szeged vol. 12 (1950) pp. 97-106. MR 35861
  • 47. I. J. Schoenberg, The finite Fourier series and elementary geometry, Amer. Math. Monthly vol. 57 (1950) pp. 390-404. MR 36332
  • 48. M. Aissen, A. Edrei, I. J. Schoenberg, and Anne Whitney, On the generating functions of totally positive sequences, Proc. Nat. Acad. Sci. U.S.A. vol. 37 (1951) pp. 303-307. MR 41897
  • 49. F. John, On integration of parabolic equations by difference methods, Communications on Pure and Applied Mathematics vol. 5 (1952) pp. 155-211. MR 47885
  • 50. T. S. Motzkin and I. J. Schoenberg, On lineal entire functions of n complex variables, Proc. Amer. Math. Soc. vol. 3 (1952) pp. 517-526. MR 49334
  • 51. I. J. Schoenberg and Anne Whitney, A theorem on polygons in n dimensions with applications to variation-diminishing and cyclic variation-diminishing linear transformations, Compositio Math. vol. 9 (1951) pp. 141-160. MR 42366
  • 52. D. V. Widder, Weierstrass transforms of positive functions, Proc. Nat. Acad. Sci. U.S.A. vol. 37 (1951) pp. 315-317. MR 41966
  • 53. D. V. Widder, Necessary and sufficient conditions for the representation of a function by a Weierstrass transform, Trans. Amer. Math. Soc. vol. 71 (1951) pp. 430-439. MR 44666
  • 54. J. Berghuis, A class of entire functions used in analytic interpolation, Proceedings Royal Neth. Acad. of Sciences. Ser. A vol. 55 (1952) pp. 468-473. MR 53216
  • 55. I. J. Schoenberg, On Pólya frequency functions I: The totally positive functions and their Laplace transforms, Journal d'Analyse Mathématique vol. 1 (1951) pp. 331-374; actually appeared in 1952. MR 47732
  • 56. I. J. Schoenberg, An isoperimetric inequality for closed curves convex in even-dimensional euclidean spaces, to appear in the Acta Math. MR 65944
  • 57. I. J. Schoenberg and Anne Whitney, On Pólya frequency functions III: The positivity of translation determinants with an application to the interpolation problem by spline curves, Trans. Amer. Math. Soc. vol. 74 (1953) pp. 246-259. MR 53177
  • 58. Anne Whitney, A reduction theorem for totally positive matrices, Journal d'Analyse Mathématique vol. 2 (1952) pp. 88-92. MR 53173
  • 59. M. Aissen, I. J. Schoenberg, and A. Whitney, On the generating functions of totally positive sequences I, Journal d'Analyse Mathématique vol. 2 (1952) pp. 93-103. MR 53174
  • 60. A. Edrei, On the generating functions of totally positive sequences II, Journal d'Analyse Mathématique vol. 2 (1952) pp. 104-109. MR 53175
  • 61. A. Edrei, Proof of a conjecture of Schoenberg on the generating function of a totally positive sequence, Canadian Journal of Mathematics vol. 5 (1953) pp. 86-94. MR 53176
  • 62. A. Edrei, On the generating function of doubly infinite, totally positive sequences, submitted for publication in Trans. Amer. Math. Soc.


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1953-09695-1

American Mathematical Society