Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

Solving linear algebraic equations can be interesting


Author: George E. Forsythe
Journal: Bull. Amer. Math. Soc. 59 (1953), 299-329
DOI: https://doi.org/10.1090/S0002-9904-1953-09718-X
MathSciNet review: 0056372
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. A. A. Abramov, On a method of acceleration of iterative processes, Doklady Akad. Nauk SSSR (N.S.) 74 (1950), 1051–1052 (Russian). MR 0041542
  • 2. Shmuel Agmon, The relaxation method for linear inequalities, NAML Report 52-27, National Bureau of Standards, Los Angeles, 1951, multilithed typescript, 23 pp.
  • 3. A. C. Aitken, On Bernoulli's numerical solution of algebraic equations, Proceedings of the Royal Society of Edinburgh vol. 46 (1926) pp. 289-305.
  • 4. A. C. Aitken, Studies in practical mathematics. V. On the iterative solution of a system of linear equations, Proc. Roy. Soc. Edinburgh. Sect. A. 63 (1950), 52–60. MR 0036086
  • 5. T. Banachiewicz, Méthode de résolution numérique des équations linéaires, du calcul des déterminants et des inverses, et de réduction des formes quadratiques, Bulletin International de l'Académie Polonaise des Sciences et des Lettres. Classe des Sciences. Mathématiques et Naturelles. Série A. Sciences Mathématiques (1938) pp. 393-404 Also in Cracow observatory reprint 22.
  • 6. V. Bargmann, D. Montgomery, and J. von Neumann, Solution of linear systems of high order, Report prepared for the Bureau of Ordnance (Contract NORD-9596), October 25, 1946, multigraphed, bound, 86 pp.
  • 7. Commandant Benoit, Note sur une méthode de résolution des équations normales provenant de l'application de la méthode des moindres carrés à un système d'équations linéaires en nombre inférieur à celui des inconnues.-Application de la méthode à la résolution d'un système défini d'équations linéaires (Procédé du Commandant Cholesky), Bull. Géodésique no. 2, 1924, pp. 67-77.
  • 8. M. D. Bingham, A new method for obtaining the inverse matrix, J. Amer. Statist. Assoc. 36 (1941), 530–534. MR 0005439
  • 9. M. Š. Birman, Some estimates for the method of steepest descent, Uspehi Matem. Nauk (N.S.) 5 (1950), no. 3(37), 152–155 (Russian). MR 0035922
  • 10. A. N. Black and R. V. Southwell, Relaxation methods applied to engineering problems. II. Basic theory, with application to surveying and to electrical networks and an extension to gyrostatic systems, Proc. Roy. Soc. London. Ser. A. vol. 164 (1938) pp. 447-467.
  • 11. O. Blumenthal, Über die Genauigkeit der Wurzeln linearer Gleichungen, Zeitschrift für Mathematik und Physik vol. 62 (1914) pp. 359-362.
  • 12. E. Bodewig, Bericht über die verschiedenen Methoden zur Lösung eines Systems linearer Gleichungen mit reellen Koeffizienten. II, III, Nederl. Akad. Wetensch., Proc. 50 (1947), 1104–1116, 1285–1295 = Indagationes Math. 9, 518–530, 611–621 (1947) (German). MR 0023611
  • 13. H. Boltz, Entwicklungsverfahren zur Ausgleichung geodätischer Netze nach der Methode der kleinsten Quadrate, Veröffentlichen des Preussischen Geodätischen Instituts, N. F. no. 90, Berlin, 1923.
  • 14. A. L. Cauchy, Méthode générale pour la résolution des systèmes d'équations simultanées, C. R. Acad. Sci. Paris vol. 25 (1847) pp. 536-538.
  • 15. Lamberto Cesari, Sulla risoluzioni dei sistemi di equazioni lineari per approssimazioni successive, Extract from Rassegna delle poste, dei telegrafi e dei telefoni vol. 4, 1937, 37 pp. A. R. Collar, see [39].
  • 16. Lothar Collatz, Graphische und numerische Verfahren, Naturforschung und Medizin in Deutschland, 1939–1946, Band 3. Angewandte Mathematik, Teil I, Verlag Chemie, Weinheim, 1953, pp. 1–92 (German). MR 0060895
  • 17. L. Collatz, Über die Konvergenzkriterien bei Iterationsverfahren für lineare Gleichungssysteme, Math. Z. 53 (1950), 149–161 (German). MR 0038135, https://doi.org/10.1007/BF01162410
  • 18. John H. Curtiss, Sampling methods applied to differential and difference equations, Proceedings, Seminar on Scientific Computation, November, 1949, International Business Machines Corp., New York, N. Y., 1950, pp. 87–109. MR 0043564
  • 19. A. de la Garza, An iterative method for solving systems of linear equations, Report K-731, Carbide and Carbon Chemical Division, Union Carbide and Carbon Corporation, K-25 Plant, Oak Ridge, Tennessee, February 15, 1951, mimeographed, 15 pp. W. J. Duncan, see [39].
  • 20. Paul S. Dwyer, Linear computations, New York, Wiley, 1951, 344 pp.
  • 21. Eckert-Mauchly Division of Remington-Rand Corporation, Matrix algebra programs for the UNIVAC, Philadelphia, 1951, typescript, 11 pp.
  • 22. Engineering Research Associates, Highspeed computing devices, New York, McGraw-Hill, 1950, 451 pp. (Supervisors: C. B. Tompkins and J. H. Wakelin; editor: W. W. Stifler, Jr.)
  • 23. V. N. Faddeeva, Vyčislitel′nye metody lineĭnoĭ algebry, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad,], 1950 (Russian). MR 0047401
  • 24. Donald A. Flanders and George Shortley, Numerical determination of fundamental modes, J. Appl. Phys. 21 (1950), 1326–1332. MR 0040075
  • 25. A. I. and G. E. Forsythe, Punched-card experiments with accelerated gradient methods for linear equations, NBS Report 1643, National Bureau of Standards, Los Angeles, March 1952, multilithed typescript, 29 pp. To appear in the National Bureau of Standards Applied Mathematics Series.
  • 26. George E. Forsythe, Theory of selected methods of finite matrix inversion and decomposition, Lecture notes by D. G. Aronson and K. E. Iverson, INA Report 52-5, National Bureau of Standards, Los Angeles, 1951, multilithed typescript, 93 pp.
  • 27. George E. Forsythe, Tentative classification of methods and bibliography on solving systems of linear equations, Simultaneous linear equations and the determination of eigenvalues, National Bureau of Standards Applied Mathematics Series, No. 29, U. S. Government Printing Office, Washington, D. C., 1953, pp. 1–28. MR 0057021
  • 28. George E. Forsythe and Richard A. Leibler, Matrix inversion by a Monte Carlo method, Math. Tables and Other Aids to Computation 4 (1950), 127–129. MR 0038138, https://doi.org/10.1090/S0025-5718-1950-0038138-X
  • 29. G. E. Forsythe and T. S. Motzkin, Asymptotic properties of the optimum gradient method, Bull. Amer. Math. Soc. Abstract 57-3-231.
  • 30. G. E. Forsythe and T. S. Motzkin, Acceleration of the optimum gradient method. Preliminary report, Bull. Amer. Math. Soc. Abstract 57-4-392.
  • 31. George E. Forsythe and Theodore S. Motzkin, An extension of Gauss’ transformation for improving the condition of systems of linear equations, Math. Tables and Other Aids to Computation 6 (1952), 9–17. MR 0048162, https://doi.org/10.1090/S0025-5718-1952-0048162-0
  • 32. L. Fox, A short account of relaxation methods, Quart. J. Mech. Appl. Math. 1 (1948), 253–280. MR 0029270, https://doi.org/10.1093/qjmam/1.1.253
  • 33. L. Fox, Practical solution of linear equations and inversion of matrices, Contributions to the solution of systems of linear equations and the determination of eigenvalues, National Bureau of Standards Applied Mathematics Series No. 39, U. S. Government Printing Office, Washington, D.C., 1954, pp. 1–54. MR 0065259
  • 34. L. Fox, Practical methods for the solution of linear equations and the inversion of matrices, J. Roy. Statist. Soc. Ser. B. 12 (1950), 120–136. MR 0039371
  • 35. L. Fox, H. D. Huskey, and J. H. Wilkinson, Notes on the solution of algebraic linear simultaneous equations, Quart. J. Mech. Appl. Math. 1 (1948), 149–173. MR 0026421, https://doi.org/10.1093/qjmam/1.1.149
  • 36. J. S. Frame, Machines for solving algebraic equations, Mathematical Tables and Other Aids to Computation 1 (1945), 337–353. MR 0011196, https://doi.org/10.1090/S0025-5718-1945-0011196-2
  • 37. [Stanley P. Frankel], Bibliography on computing machines, Analysis Laboratory, California Institute of Technology, Pasadena, October 1949, hectographed typescript, 44 pp. (Frankel's name not on copy.)
  • 38. Stanley P. Frankel, Convergence rates of iterative treatments of partial differential equations, Math. Tables and Other Aids to Computation 4 (1950), 65–75. MR 0046149, https://doi.org/10.1090/S0025-5718-1950-0046149-3
  • 39. R. A. Frazer, W. J. Duncan, and A. R. Collar, Elementary Matrices and Some Applications to Dynamics and Differential Equations, Cambridge, at the University Press; New York, the Macmillan Company, 1946. MR 0019077
  • 40. Konrad Friedrich and Werner Jenne, Geometrischanschauliche Auflösung linearer mit Nullkoeffizienten ausgestatteter Gleichungssysteme, Deutsche Akad. Wiss. Berlin. Veröff. Geodät. Inst. Potsdam, 1951 (1951), no. 5, viii+68 (German). MR 0044212
  • 41. C. F. Gauss, Letter to Gerling, December 26, 1823, Werke, Göttingen, vol. 9, pp. 278-281. Trans, by G. E. Forsythe, Mathematical Tables and Other Aids to Computation vol. 5 (1951) pp. 255-258.
  • 42. C. F. Gauss, Supplementum theoriae combinationis observationum erroribus minimis obnoxiae, 1826, Werke, Göttingen, vol. 4, pp. 55-93.
  • 43. M. K. Gavurin, The use of polynomials of best approximation for improving the convergence of iterative processes, Uspehi Matem. Nauk (N.S.) 5 (1950), no. 3(37), 156–160 (Russian). MR 0037073
  • 44. Hilda Geiringer, On the solution of systems of linear equations by certain iteration methods, J. W. Edwards, Ann Arbor, Michigan, 1948. MR 0029272
  • 45. Herman H. Goldstine and John von Neumann, Numerical inverting of matrices of high order. II, Proc. Amer. Math. Soc. 2 (1951), 188–202. MR 0041539, https://doi.org/10.1090/S0002-9939-1951-0041539-X
  • 46. D. R. Hartree, Experimental arithmetic, Eureka vol. 10 (1948) pp. 13-18.
  • 47. Harvard Computation Laboratory, A manual of operation for the automatic sequence controlled calculator, Harvard University Press, 1946, 561 pp.
  • 48. R. M. Hayes, Iterative methods of solving linear problems on Hilbert space, Contributions to the solution of systems of linear equations and the determination of eigenvalues, National Bureau of Standards Applied Mathematics Series No. 39, U. S. Government Printing Office, Washington, D. C., 1954, pp. 71–103. MR 0066563
  • 49. A. Hertwig, Die Lösung linearer Gleichungen durch unendliche Reihen und ihre Anwendungen auf die Berechnung hochgradig statisch unbestimmter Systeme, pp. 37-59 of Festschrift für H. Müller-Breslau, Leipzig, 1912.
  • 50. M. R. Hestenes, Iterative methods for solving linear equations, NAML Report 52-9, National Bureau of Standards, Los Angeles, 1951, multilithed typescript, 19 pp.
  • 51. M. R. Hestenes, Urs Hochstrasser, and L. S. Wilson, Some numerical examples on solving systems of linear equations by the conjugate gradient method for non-symmetric systems of equations, National Bureau of Standards, Los Angeles, multilithed typescript, August 21, 1952, 34 pp.
  • 52. Magnus R. Hestenes and William Karush, A method of gradients for the calculation of the characteristic roots and vectors of a real symmetric matrix, J. Research Nat. Bur. Standards 47 (1951), 45–61. MR 0043552
  • 53. Magnus R. Hestenes and Marvin L. Stein, The solution of linear equations by minimization, NAML Report 52-45, National Bureau of Standards, Los Angeles, December 12, 1951, multilithed typescript, 35 pp.
  • 54. Magnus R. Hestenes and Eduard Stiefel, Methods of conjugate gradients for solving linear systems, J. Research Nat. Bur. Standards 49 (1952), 409–436 (1953). MR 0060307
  • 55. Thomas J. Higgins, A survey of the approximate solution of two-dimensional physical problems by variational methods and finite difference procedures, pp. 169-198 of L. E. Grinter (editor), Numerical methods of analysis in engineering, New York, MacMillan, 1949, 207 pp.
  • 56. [Urs] Hochstrasser, Die Berechnung der Verschiebungen in einer parallelogrammförmigen Scheibe, Bericht S-17, Techn. Abteilung, Eidgenössisches Flugzeugwerk, Emmen, Switzerland, multigraphed typescript, 21 pp.
  • 57. Urs Hochstrasser, The solution of systems of linear equations by the conjugate gradient method for use on IBM equipment, National Bureau of Standards, Los Angeles, manuscript. Urs Hochstrasser, see also [51 ].
  • 58. Harold Hotelling, Some new methods in matrix calculation, Ann. Math. Statistics 14 (1943), 1–34. MR 0007851
  • 59. A. S. Householder, Numerical analysis, Lectures on Modern Mathematics, Vol. I, Wiley, New York, 1963, pp. 59–97. MR 0178559
  • 60. A. S. Householder, Some numerical methods for solving systems of linear equations, Amer. Math. Monthly 57 (1950), 453–459. MR 0039369, https://doi.org/10.2307/2308297
  • 61. H. D. Huskey, Characteristics of the Institute for Numerical Analysis computer, Math. Tables and Other Aids to Computation 4 (1950), 103–108. MR 0037592, https://doi.org/10.1090/S0025-5718-1950-0037592-7
  • 62. International Business Machines Corp., Bibliography on the use of IBM machines in science, statistics, and education, New York, 1950. Apparently superseded by [38a]. K. E. Iverson, see [26].
  • 63. C. G. J. Jacobi, Ueber eine neue Auflösungsart der bei der Methode der kleinsten Quadrate vorkommenden lineären Gleichungen, Astronomische Nachrichten vol. 22 (1845) no. 523, pp. 297-306. (Also in Jacobi's Werke, vol. 3, p. 467?.)
  • 64. M. Janet, Sur les systèmes d'équations aux dérivées partielles, C. R. Acad. Sci. Paris vol. 170 (1920) pp. 1101-1103 and J. Math. Pures Appl. (8) vol. 3 (1920) pp. 65-151. Werner Jenne, see [40].
  • 65. Henry Jensen, An attempt at a systematic classification of some methods for the solution of normal equations, Geodætisk Institut, Københaven, Meddelelse 1944 (1944), no. 18, 45. MR 0015921
  • 66. Enno Jürgens, Zur Auflösung linearer Gleichungssysteme und numerischen Berechnung von Determinanten, Aachen, Palm (printer), 1886, 20 pp.
  • 67. S. Kaczmarz, Angenäherte Auflösung von Systemen linearer Gleichungen, Bulletin International de l'Académie Polonaise des Sciences et des Lettres. Classe des Sciences Mathématiques et Naturelles. Série A. Sciences Mathématiques (1937) pp. 355-357.
  • 68. L. V. Kantorovich, Functional analysis and applied mathematics, NBS Rep. 1509, U. S. Department of Commerce, National Bureau of Standards, Los Angeles, Calif., 1952. Translated by C. D. Benster. MR 0053389
  • 69. L. V. Kantorovič and V. I. Krylov, Približennye metody vysšego analiza, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1950 (Russian). 3d ed.]. MR 0042210
  • 70. W. Karush, Convergence of a method of solving linear problems, Proc. Amer. Math. Soc. 3 (1952), 839–851. MR 0055794, https://doi.org/10.1090/S0002-9939-1952-0055794-4
    M. A. Krasnosel′skiĭ and S. G. Kreĭn, An iteration process with minimal residuals, Mat. Sbornik N.S. 31(73) (1952), 315–334 (Russian). MR 0052885
  • 71. A. G. Kuroš, A. I. Markuševič, and P. K. Raševskiĭ, Matematika v SSSR za tridcat' let 1917-1947 (Mathematics in the USSR in the thirty years 1917-1947) (Russian), Moscow-Leningrad, 1948, 1044 pp. (pp. 759-857 on numerical and graphical methods contain a survey and comprehensive bibliography of Russian work).
  • 72. Cornelius Lanczos, Solution of systems of linear equations by minimized-iterations, J. Research Nat. Bur. Standards 49 (1952), 33–53. MR 0051583
  • 73. Cornelius Lanczos, Chebyshev polynomials in the solution of large-scale linear systems, Proceedings of the Association for Computing Machinery, Toronto, 1952, Sauls Lithograph Co. (for the Association for Computing Machinery), Washington, D. C., 1953, pp. 124–133. MR 0067580
  • 74. H. Liebmann, Die angenäherte Ermittlung harmonischer Funktionen und konformer Abbildung, Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Abteilung der Bayerischen Akademie der Wissenschaften zu München. Physikalisch-Mathematische Klasse vol. 47 (1918) pp. 385-416.
  • 75. A. T. Lonseth, The propagation of error in linear problems, Trans. Amer. Math. Soc. 62 (1947), 193–212. MR 0022315, https://doi.org/10.1090/S0002-9947-1947-0022315-4
  • 76. Samuel Lubkin, A method of summing infinite series, J. Research Nat. Bur. Standards 48 (1952), 228–254. MR 0051576
  • 77. L. A. Lyusternik, Remarks on the numerical solution of boundary problems for Laplace’s equation and the calculation of characteristic values by the method of networks, Trav. Inst. Math. Stekloff 20 (1947), 49–64 (Russian). MR 0025825
  • 78. C. C. MacDuffee, The theory of matrices, New York, Chelsea, 1946, 110 pp.
  • 79. Wladimir Markoff and J. Grossmann, Über Polynome, die in einem gegebenen Intervalle möglichst wenig von Null abweichen, Math. Ann. 77 (1916), no. 2, 213–258 (German). MR 1511855, https://doi.org/10.1007/BF01456902
  • 80. S. N. Mergelyan, Uniform approximation of functions in the complex plane (Russian), Uspehi Matematičeskih Nauk (N.S.) vol. 7 (1952) no. 2, pp. 31-122. Trans, in Amer. Math. Soc. Translation T-115.
  • 81. William Edmund Milne, Numerical Calculus. Approximations, Interpolation, Finite Differences, Numerical Integration, and Curve Fitting, Princeton University Press, Princeton, New Jersey, 1949. MR 0028671
  • 82. Theodore S. Motzkin, Bibliography on linear inequalities, linear programming, game strategy, economic behavior, and statistical decision functions, in preparation for probable issue by the National Bureau of Standards, Los Angeles. Theodore S. Motzkin, see also [29; 30; 31; 83].
  • 83. T. S. Motzkin and I. J. Schoenberg, On the relaxation method for linear inequalities, NBS Report 1881, National Bureau of Standards, Los Angeles, August, 1952, multilithed typescript, 21 pp.
  • 84. F. R. Moulton, On the Solutions of Linear Equations Having Small Determinants, Amer. Math. Monthly 20 (1913), no. 8, 242–249. MR 1517882, https://doi.org/10.2307/2973303
  • 85. H. P. Mulholland, On the distribution of a convex even function of several independent rounding-off errors, Proc. Amer. Math. Soc. 3 (1952), 310–321. MR 0048148, https://doi.org/10.1090/S0002-9939-1952-0048148-8
  • 86. Francis J. Murray, The Theory of Mathematical Machines, King’s Crown Press, New York, N. Y., 1948. 2d ed. MR 0030823
  • 87. National Bureau of Standards, Simultaneous linear equations and the determination of eigenvalues, Applied mathematics series, vol. 29, U.S. Govt. Printing Office, in press.
  • 88. P. A. Nekrasov, Determination of the unknowns by the method of least squares for very many unknowns (Russian), Maternatičeskiĭ Sbornik vol. 12 (1884) pp. 189-204.
  • 89. Alexandre Ostrowski, Sur la détermination des bornes inférieures pour une classe des déterminants, Bull. Sci. Math. (2) vol. 61 (1937) pp. 19-32.
  • 90. Alexandre Ostrowski, Sur la variation de la matrice inverse d’une matrice donnée, C. R. Acad. Sci. Paris 231 (1950), 1019–1021 (French). MR 0038390
  • 91. Alexandre Ostrowski, Determinants with dominant principal diagonal and the absolute convergence of linear iteration processes (text in German), NBS Report 1727, National Bureau of Standards, Washington, June 1, 1952, multilithed typescript, 49 pp.
  • 92. Alexandre Ostrowski, On the convergence of cyclic linear iterations for symmetric and nearly symmetric matrices. II, NBS Report 1759, National Bureau of Standards, Los Angeles, June 26, 1952, multilithed typescript, 5 pp.
  • 93. Alexandre Ostrowski, On the linear iteration procedures for symmetric matrices, NBS Report 1844, National Bureau of Standards, Los Angeles, August 4, 1952, multilithed typescript, 29 pp.
  • 94. Sam Perlis, Theory of matrices, Addison-Wesley Press, Inc., Cambridge, Mass., 1952. MR 0048384
  • 95. P. Pizzetti, Sulla compensazione delle osservazioni secondo il metodo dei minimi quadrati, nota I, II, Rendiconti della Reale Accademia Nazionale dei Lincei, Rome (4) vol. 3 (1887) pp. 230-235 and 288-293. Hilda Pollaczek-Geiringer, see [44] and [123]. P. K. Raševskiĭ, see [71 ].
  • 96. Edgar Reich, The solution of linear algebraic equations by successive approximations, Memorandum M-565, Servomechanisms Laboratory, Massachusetts Institute of Technology, Cambridge, August 5, 1948, hectographed, 36 pp.
  • 97. Edgar Reich, On the convergence of the classical iterative method of solving linear simultaneous equations, Ann. Math. Statistics 20 (1949), 448–451. MR 0031327
  • 98. L. F. Richardson, The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam, Philos. Trans. Roy. Soc. London. Ser. A vol. 210 (1910) pp. 307-357.
  • 99. Maria Sofia Roma, Sulla risoluzione numerica dei sistemi di equazioni algebriche lineari col metodo della ortogonalizzazione, Ricerca Sci. 20 (1950), 1288–1290=Consiglio Naz. Ricerche. Pubbl. Ist. Appl. Calcolo no. 283 (1950) (Italian). MR 0046142
  • 100. J. Barkley Rosser, Rapidly converging iterative methods for solving linear equations, Simultaneous linear equations and the determination of eigenvalues, National Bureau of Standards Applied Mathematics Series, No. 29, U.S. Government Printing Office, Washington, D. C., 1953, pp. 59–64. MR 0060308
  • 101. Paul A. Samuelson, A convergent iterative process, J. Math. Phys. Mass. Inst. Tech. 24 (1945), 131–134. MR 0014827, https://doi.org/10.1002/sapm1945241131
  • 102. F. E. Satterthwaite, Error control in matrix calculation, Ann. Math. Statistics 15 (1944), 373–387. MR 0011798
  • 103. E. Schröder, Ueber unendlich viele Algorithmen zur Auflösung der Gleichungen, Math. Ann. 2 (1870), no. 2, 317–365 (German). MR 1509664, https://doi.org/10.1007/BF01444024
  • 104. G. Schulz, Iterative Berechnung der reziproken Matrix, Zeitschrift für Angewandte Mathematik und Mechanik vol. 13 (1933) pp. 57-59.
  • 105. I. Schur, Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind, J. Reine Angew. Math. vol. 147 (1917) pp. 205-232.
  • 106. [Hans Schwerdtfeger], Bibliography on iteration [reproduced at National Bureau of Standards, Los Angeles, 1951], multilithed typescript, 13 pp. (Bracketed material not on copy.)
  • 107. Ludwig Seidel, Ueber ein Verfahren, die Gleichungen, auf welche die Methode der kleinsten Quadrate führt, sowie lineäre Gleichungen überhaupt, durch successive Annäherung aufzulösen, Abhandlungen der Bayerischen Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Abteilung vol. 11 (1874) no. 3, pp. 81-108.
  • 108. Daniel Shanks, An analogy between transients and mathematical sequences and some nonlinear sequence-to-sequence transforms suggested by it. Part I, NOLM 9994, Naval Ordnance Laboratory, Silver Spring, Maryland, July 26, 1949, multilithed typescript, 42 pp. George Shortley, see [24].
  • 109. R. V. Southwell, Relaxation Methods in Engineering Science. A treatise on approximate computation, Oxford Engineering Science Series, Oxford University Press, New York, 1940. MR 0005425
  • 110. R. V. Southwell, Relaxation Methods in Theoretical Physics, Oxford, at the Clarendon Press, 1946. MR 0018983
  • 111. J. L. Stearn, Iterative solutions of normal equations, Bull. Géodésique 1951 (1951), 331–339. MR 0048160, https://doi.org/10.1007/BF02525819
  • 112. Marvin L. Stein, Gradient methods in the solution of systems of linear equations, J. Research Nat. Bur. Standards 48 (1952), 407–413. MR 0050378
  • 113. P. Stein and R. L. Rosenberg, On the solution of linear simultaneous equations by iteration, J. London Math. Soc. 23 (1948), 111–118. MR 0028682, https://doi.org/10.1112/jlms/s1-23.2.111
  • 114. Eduard Stiefel, Über einige Methoden der Relaxationsrechnung, Z. Angew. Math. Physik 3 (1952), 1–33 (German). MR 0047409
  • 115. Olga Taussky, Notes on numerical analysis. II. Note on the condition of matrices, Math. Tables and Other Aids to Computation 4 (1950), 111–112. MR 0038137, https://doi.org/10.1090/S0025-5718-1950-0038137-8
  • 116. Olga Taussky, Bibliography on bounds for characteristic roots of finite matrices, NBS Report 1162, National Bureau of Standards, Washington, September, 1951, multilithed typescript, 10 pp.
  • 117. Olga Taussky and John Todd, Systems of equations, matrices and determinants, Math. Mag. 26 (1952), 9–20, 71–88. MR 0053058, https://doi.org/10.2307/3029837
  • 118. G. Temple, The general theory of relaxation methods applied to linear systems, Proc. Roy. Soc. London Ser. A. vol. 169 (1939) pp. 476-500.
  • 119. John Todd, The condition of a certain matrix, Proc. Cambridge Philos. Soc. 46 (1950), 116–118. MR 0033192
  • 120. C. Tompkins, Projection methods in calculation of some linear problems, [1949?], multilithed typescript, 52 pp., part of Engineering Research Associates, Logistics papers, issue no. IV, Appendix I to Bimonthly Progress Report No. 17, Contract N6onr-240, Task Order I, Office of Naval Research, Project NR 047 010. C. Tompkins, see also [22].
  • 121. L. B. Tuckerman, On the mathematically significant figures in the solution of simultaneous linear equations, Ann. Math. Statistics 12 (1941), 307–316. MR 0005440
  • 122. A. M. Turing, Rounding-off errors in matrix processes, Quart. J. Mech. Appl. Math. 1 (1948), 287–308. MR 0028100, https://doi.org/10.1093/qjmam/1.1.287
  • 123. R. von Mises and Hilda Pollaczek-Geiringer, Praktische Verfahren der Gleichungsauflösung, Zeitschrift für Angewandte Mathematik und Mechanik vol. 9 (1929) pp. 58-77 and 152-164. J. von Neumann, see [6] and [45].
  • 124. John von Neumann and H. H. Goldstine, Numerical inverting of matrices of high order, Bull. Amer. Math. Soc. 53 (1947), 1021–1099. MR 0024235, https://doi.org/10.1090/S0002-9904-1947-08909-6
  • 125. W. R. Wasow, A note on the inversion of matrices by random walks, Math. Tables and Other Aids to Computation 6 (1952), 78–81. MR 0055033, https://doi.org/10.1090/S0025-5718-1952-0055033-2
  • 126. Helmut Wittmeyer, Einfluss der Änderung einer Matrix auf die Lösung des zugehörigen Gleichungssystems, sowie auf die characteristischen Zahlen und die Eigenvectoren, Zeitschrift für Angewandte Mathematik und Mechanik vol. 16 (1936) pp. 287-300.
  • 127. Helmut Wittmeyer, Über die Lösung von linearen Gleichungssystemen durch Iteration, Zeitschrift für Angewandte Mathematik und Mechanik vol. 16 (1936) pp. 301-310.
  • 128. Max A. Woodbury, Inverting modified matrices, Statistical Research Group, Memo. Rep. no. 42, Princeton University, Princeton, N. J., 1950. MR 0038136
  • 129. David M. Young, Jr., Iterative methods for solving partial difference equations of elliptic type, Ph. D. Thesis, Harvard University Mathematics Department, 1950, blueprint, c. 100 pp.
  • 130. S. I. Zuhovickiĭ, An algorithm for the solution of the Čebyšev approximation problem in the case of a finite system of incompatible linear equations, Doklady Akad. Nauk SSSR (N.S.) 79 (1951), 561–564 (Russian). MR 0043559
  • 131. Rudolf Zurmühl, Matrizen. Eine Darstellung für Ingenieure, Springer Verlag, Berlin-Göttingen-Heidelberg, 1950 (German). MR 0036212


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1953-09718-X