Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Bulletin of the American Mathematical Society
Bulletin of the American Mathematical Society
ISSN 1088-9485(online) ISSN 0273-0979(print)

 

The theory of dynamic programming


Author: Richard Bellman
Journal: Bull. Amer. Math. Soc. 60 (1954), 503-515
MathSciNet review: 0067459
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. K. J. Arrow, D. Blackwell, and M. A. Girshick, Bayes and minimax solutions of sequential decision problems, Econometrica 17 (1949), 213–244. MR 0032173 (11,261h)
  • 2. K. J. Arrow, T. E. Harris, and J. Marschak, Optimal inventory policy, Cowles Commission Paper No. 44, 1951.
  • 3. Richard Bellman, An introduction to the theory of dynamic programming, The Rand Corporation, Santa Monica, Calif., 1953. MR 0061805 (15,887e)
  • 4. Richard Bellman, On games involving bluffing, Rend. Circ. Mat. Palermo (2) 1 (1952), 139–156. MR 0053470 (14,778h)
  • 5. Richard Bellman, On the theory of dynamic programming, Proc. Nat. Acad. Sci. U. S. A. 38 (1952), 716–719. MR 0050856 (14,392b)
  • 6. Richard Bellman, Some problems in the theory of dynamic programming, Econometrica 22 (1954), 37–48. MR 0060709 (15,713c)
  • 7. Richard Bellman, Bottleneck problems and dynamic programming, Proc. Nat. Acad. Sci. U. S. A. 39 (1953), 947–951. MR 0061808 (15,888a)
  • 8. Richard Bellman, An introduction to the theory of dynamic programming, The Rand Corporation, Santa Monica, Calif., 1953. MR 0061805 (15,887e)
  • 9. Richard Bellman, Some functional equations in the theory of dynamic programming, Proc. Nat. Acad. Sci. U. S. A. 39 (1953), 1077–1082. MR 0061806 (15,887f)
  • 10. Richard Bellman, Dynamic programming and a new formalism in the calculus of variations, Proc. Nat. Acad. Sci. U. S. A. 40 (1954), 231–235. MR 0061289 (15,804f)
  • 11. R. Bellman, The theory of dynamic programming, a general survey, Chapter from "Mathematics for Modern Engineers" by E. F. Beckenbach, McGraw-Hill, forthcoming.
  • 12. Richard Bellman, On some applications of the theory of dynamic programming to logistics, Naval Res. Logist. Quart. 1 (1954), 141–153. MR 0063636 (16,155d)
  • 13. Richard Bellman, Some applications of the theory of dynamic programming—a review, J. Operations Res. Soc. Amer. 2 (1954), 275–288. MR 0062414 (15,975h)
  • 14. Richard Bellman, Bottleneck problems, functional equations, and dynamic programming, Econometrica 23 (1955), 73–87. MR 0070935 (17,58e)
  • 15. R. Bellman, On a functional equation arising in the problem of optimal inventory, The RAND Corporation, Paper P-480, January 1954.
  • 16. R. Bellman, Dynamic programming and the calculus of variations--I, The RAND Corporation, Paper P-495, March 1954.
  • 17. Richard Bellman, Dynamic programming of continuous processes, The Rand Corporation, Santa Monica, Calif., 1954. MR 0071700 (17,171a)
  • 18. Richard Bellman, Dynamic programming of continuous processes, The Rand Corporation, Santa Monica, Calif., 1954. MR 0071700 (17,171a)
  • 19. Richard Bellman and David Blackwell, Some two-person games involving bluffing, Proc. Nat. Acad. Sci. U. S. A. 35 (1949), 600–605. MR 0031700 (11,192b)
  • 20. Richard Bellman, Irving Glicksberg, and Oliver Gross, On some variational problems occurring in the theory of dynamic programming, Proc. Nat. Acad. Sci. U. S. A. 39 (1953), 298–301. MR 0054183 (14,885d)
  • 21. R. Bellman, I. Glicksberg, and O. Gross, On some variational problems in the theory of dynamic programming, Rend. Circ. Mat. Palermo, forthcoming.
  • 22. R. Bellman, I. Glicksberg, and O. Gross, The theory of dynamic programming as applied to a smoothing problem, J. Soc. Indust. Appl. Math. 2 (1954), 82–88. MR 0067378 (16,721c)
  • 23. Richard Bellman and Oliver Gross, Some combinatorial problems arising in the theory of multi-stage processes, J. Soc. Indust. Appl. Math. 2 (1954), 175–183 (1955). MR 0068193 (16,843a)
  • 24. R. Bellman, T. E. Harris, and H. N. Shapiro, Studies on functional equations occurring in decision processes, The RAND Corporation, Paper P-382, August 1952.
  • 25. Richard Bellman and Shermann Lehman, On the continuous gold-mining equation, Proc. Nat. Acad. Sci. U. S. A. 40 (1954), 115–119. MR 0060681 (15,708c)
  • 26. R. Bellman and R. S. Lehman, On a functional equation in the theory of dynamic programming and its generalizations, The RAND Corporation, Paper P-433, January 1954.
  • 27. R. Bellman and R. S. Lehman, Studies on bottleneck problems in production processes, The RAND Corporation, Paper P-492, February 1954.
  • 28. R. R. Bush and C. F. Mosteller, A mathematical model for simple learning, Psychological Review vol. 58 (1951) pp. 313-325.
  • 29. A. Dvoretzky, J. Kiefer, and J. Wolfowitz, The inventory problem. I. Case of known distributions of demand, Econometrica 20 (1952), 187–222. MR 0047304 (13,856a)
  • 30. A. Dvoretzky, A. Wald, and J. Wolfowitz, Elimination of randomization in certain statistical decision procedures and zero-sum two-person games, Ann. Math. Statistics 22 (1951), 1–21. MR 0039228 (12,515a)
  • 31. W. K. Estes, Toward a statistical theory of learning, Psychological Review vol. 57 (1950) pp. 94-107.
  • 32. M. M. Flood, On stochastic learning theory, The RAND Corporation, Paper P-353, December 1952.
  • 33. S. Johnson, Optimal two- and three-stage production schedules with setup times included, The RAND Corporation, Paper P-402, May 1953.
  • 34. S. Johnson and S. Karlin, On optimal sampling procedure for a problem of two populations--I, The RAND Corporation, Paper P-328, October 1952.
  • 35. S. Karlin, A mathematical treatment of learning models--I, The RAND Corporation, Research Memorandum RM-921, September 1952.
  • 36. S. Karlin, and H. N. Shapiro, Decision processes and functional equations, The RAND Corporation, Research Memorandum RM-933, September 1952.
  • 37. M. Peisakoff, More on games of survival, The RAND Corporation, Research Memorandum RM-884, June 1952.
  • 38. Herbert Robbins, Some aspects of the sequential design of experiments, Bull. Amer. Math. Soc. 58 (1952), 527–535. MR 0050246 (14,300b), http://dx.doi.org/10.1090/S0002-9904-1952-09620-8
  • 39. L. S. Shapley, Stochastic games, Proc. Nat. Acad. Sci. U. S. A. 39 (1953), 1095–1100. MR 0061807 (15,887g)
  • 40. Richard Bellman, Dynamic programming of continuous processes, The Rand Corporation, Santa Monica, Calif., 1954. MR 0071700 (17,171a)
  • 41. Richard Bellman, Some functional equations in the theory of dynamic programming, Proc. Nat. Acad. Sci. U. S. A. 39 (1953), 1077–1082. MR 0061806 (15,887f)
  • 42. R. Bellman, An iterative procedure for the determination of the Perron root of a positive matrix, The RAND Corporation, Paper P-577.
  • 43. R. Bellman, On a quasi-linear equation, The RAND Corporation, Paper P-575.
  • 44. Richard Bellman, Dynamic programming and a new formalism in the theory of integral equations, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 31–34. MR 0072365 (17,272d)
  • 45. R. Bellman, A problem in the sequential design of experiments, The RAND Corporation, Paper P-586.
  • 46. Richard Bellman, Decision making in the face of uncertainty. I, Naval Res. Logist. Quart. 1 (1954), 230–232 (1955). MR 0067446 (16,730g)
  • 47. Richard Bellman, Decision making in the face of uncertainty. I, Naval Res. Logist. Quart. 1 (1954), 230–232 (1955). MR 0067446 (16,730g)
  • 48. Richard Bellman, Some problems in the theory of dynamic programming, Econometrica 22 (1954), 37–48. MR 0060709 (15,713c)
  • 49. R. Bellman, I. Glicksberg, and O. Gross, On the optimal inventory equation, The RAND Corporation, Paper P-572.
  • 50. R. Bellman, On some mathematical problems arising in the theory of optimal inventory and stock control, The RAND Corporation, Paper P-580.


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9904-1954-09848-8
PII: S 0002-9904(1954)09848-8