tion by polynomials. An example is the following theorem. Let \(\sigma(t) \)
be a nondecreasing function, \(\sigma'(t) \) the derivative of its absolutely
continuous part. Let \(L^p(d\sigma) \) (\(p \geq 1 \)) be the space of functions \(f(t) \)
(\(0 \leq t < 2\pi \)) with \(\| f \|^p_p = \int_0^{2\pi} |f(t)|^p d\sigma(t) \). The set \(\{1, e^{it}, e^{2it}, \ldots\} \)
is total in \(L^p(d\sigma) \) if and only if \(\int_0^{2\pi} |\log \sigma'(t)| dt = \infty \).

The book is handsomely printed, but the list of typographical
errors at the end is far from complete. In particular, the reader should
be encouraged to read p. 233 before p. 232.

W. H. J. Fuchs

Brief Mention

Equazioni differenziali. By F. G. Tricomi. 2d ed. Torino, Einaudi,
1953. 353 pp. 4000 lire.

The revised edition of this book follows very closely the pattern of
the first edition, which was reviewed in this Bulletin vol. 56 (1950)
pp. 195–196. The most important cases of inclusion of new material
are: (i) Chapter II has been augmented by an introduction to the
subject of relaxation oscillations; (ii) Chapter IV has been revised
considerably, to provide a more comprehensive treatment of the
asymptotic character of solutions of differential equations of the form
\(y'' + Q(x)y = 0 \).

Details of discussion have been altered in various instances, notably
in Chapter IV in the treatment of the polynomials of Laguerre and
Legendre. Material on the “method of Fubini” that formed an Ap­
pendix in the initial edition has been incorporated in Chapter IV;
also, a number of new references have been added to the bibliography.

In this new edition the author has produced a commendable im­
provement of the highly interesting and valuable first edition.

W. T. Reid

Linear operators. Spectral theory and some other applications. By R. G.

This book contains an introductory chapter, and then a chapter
on quantum mechanics. These are followed by a long section (three
chapters) devoted to various proofs of the spectral theorem. For a
textbook treatment of this, the reviewer prefers the snappy handling
in [1]. A sixth chapter is concerned with “projective convergence and
limit in matrix spaces and rings.” Chapter 7, the final chapter, is a
self-contained exposition of the elements of the theory of the theory of
Banach algebras. The theory of Banach algebras without unit element is
included (i.e. the theory involving adjunction of a unit element, with