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According to a currently popular principle of classification, mathe
matics is the study of various "categories. " A category consists of 
certain "objects" (e.g., groups, topological spaces) and certain 
"mappings" (e.g., homomorphisms, continuous functions). One pos
sible category has measure spaces for its objects and, correspondingly, 
measure-preserving transformations for its mappings. The usual dis
tinction between pure measure theory on the one hand and ergodic 
theory on the other hand is merely the distinction between the study 
of the objects and the study of the mappings of this particular cate
gory. The purpose of the following pages is to give a descriptive sum
mary of von Neumann's contributions to this category. 

Pure measure theory consists of two parts whose motivations, 
methods, and results are radically different in both spirit and detail ; 
one part treats finitely additive measures and the other part insists 
on assuming countable additivity. A corresponding split in ergodic 
theory is perfectly conceivable, but it just does not happen to exist; 
up to now ergodic theory has been built on a countably additive 
foundation only. Von Neumann's most spectacular contribution to 
this whole circle of ideas is in ergodic theory. This is not to say that 
he left no mark on pure measure theory; the discovery of the relation 
of the problem of (finitely additive) measure to group theory, and the 
proof of the uniqueness of (countably additive) Haar measure in 
locally compact groups are mathematical accomplishments of con
siderable importance. There are also a couple of isolated measure-
theoretic results, one pretty and startling new proof of an old theorem, 
and some lecture notes of expository value. Let us proceed to a 
slightly more technical discussion of these matters, in the following 
order: finitely additive measures, countably additive measures, and 
measure-preserving transformations. 

The "problem of measure" for w-dimensional Euclidean space Rn 

may be stated as follows: does there exist a positive, normalized, in
variant, and additive set-function on the class of all subsets of Rn? 
("Positive" means non-negative, "normalized" means that the meas
ure of the unit cube is 1, "invariant" means invariant under rigid 
motions, and "additive" means finitely additive.) The work of 
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Hausdorff and Banach implies that the problem of measure has a 
positive solution if n = 1 or n = 2 and a negative solution in all other 
cases. This fact has caused some mathematicians to say that the 
character of space changes in a fundamental and slightly mysterious 
manner in the passage from two dimensions to three. The purpose of 
von Neumann's memoir [5] on the subject is to put the problem into 
a proper general context and, within that context, to analyze and to 
extend the known (positive and negative) results. The profound in
sight to be gained from the paper is that the whole problem is es
sentially group-theoretic in character, and that, in particular, for the 
solvability of the problem of measure the ordinary algebraic concept 
of solvability of a group is relevant. Thus, according to von Neumann, 
it is the change of group that makes a difference, not the change of 
space; replacing the group of rigid motions by other perfectly reason
able groups we can produce unsolvable problems in R2 and solvable 
ones in Rz. 

The right way to generalize the problem of measure is to replace 
Rn by an arbitrary set X, to replace the unit cube (mentioned in the 
normalization) by an arbitrary subset C of X, and to replace the 
group of rigid motions by an arbitrary group G of transformations 
acting on X; let us call the generalization so obtained the (X, C, G) 
problem. A useful special case is the (G, G, G) problem, where G is 
an arbitrary group considered as acting on itself by, say, left multipli
cation. If this special problem has a solution for a particular group G, 
then tha t group G is called "measurable." The general problem is 
reduced to the special problem in this sense: if G is a measurable 
group, then there is a relatively simple condition on X, C, and G that 
is necessary and sufficient for the solvability of the (X, C, G) problem. 
(We do not need to state the condition here, but, for purposes of 
reference, let us call it the condition K.) An abelian group is always 
measurable; if N is a normal subgroup of G such that both N and 
G/N are measurable, then G is measurable. I t follows that every 
solvable group is measurable. Since the condition K turns out to be 
satisfied in the classical cases (rigid motions on Euclidean spaces), 
and since the group of rigid motions on Rn is solvable exactly when 
n — l or w = 2, the positive solution of the classical problem is sub
sumed under the generalization. 

The classical negative results need different treatment; the crucial 
condition this time is the representability in G of a free group on two 
generators. The group of rigid motions on Rn satisfies this condition 
exactly when w>2, and the unimodular group on R2 also satisfies it. 
One of the things we can conclude from all this has a curious sound. 
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The rigid motions on R2 are the length-preserving maps and the 
unimodular transformations are the area-preserving maps, so that 
the length-preserving maps preserve some generalized area whereas 
the area-preserving maps do not. 

If the negative results are viewed as paradoxical, then there is even 
a paradox in R1, but it is of a metric (not measure-theoretic) charac
ter. Briefly: if E and F are subsets of J?1, write E < F if each of E and 
F can be decomposed into the same finite number of pieces so that 
there is a one-to-one and distance-decreasing mapping from each 
piece of F onto the corresponding piece of E. Assertion : if E and F 
are arbitrary nondegenerate intervals, then E<F. 

A related paradox is von Neumann's sharpening of the usual 
(Vitali) argument for proving the existence of a nonmeasurable set. 
(The existence of such a set, by the way, yields a conclusive negative 
answer to the problem of countably additive measure in Rn for all 
values of n.) The usual construction constructs a countable partition 
of the perimeter of a circle (or of the entire line) into pairwise con
gruent sets. Is there such a partition for a bounded interval? The 
question is of a technical, gymnastic kind, and von Neumann's posi
tive answer [4] uses the set-theoretic and epsilon tic trickery ap
propriate to this domain. 

Some of the methods of these papers on pathological measure 
theory are of greater significance than the results. In anticipation of 
his later study of dimension theory in algebras of operators, von 
Neumann made use of Banach's results on equivalence by finite de
composition, and, in anticipation of his later work on almost periodic 
functions, he had occasion to reformulate the problem of measure in 
terms of certain "means" of functions. 

There is a more or less measure-theoretic question that arises 
naturally at the beginning of the subject; this is perhaps the ap
propriate time to mention von Neumann's treatment of it. Is there a 
way of selecting a collection of measurable sets in, say, the line, so 
that every measurable set is equivalent to exactly one selected set, 
and so that the process of selection preserves the finite set-theoretic 
operations? The answer [7] is yes, and the result is generalizable to 
the related selection problem for measurable functions. Later, in a 
joint work with Stone [15], the problem is placed into its appropriate 
algebraic setting. The general question is this: if A is a Boolean al
gebra and M is an ideal in A, when does there exist a subalgebra of A 
such that the restriction to that subalgebra of the projection from A 
to A/M is an isomorphism? Various sufficient conditions are given; 
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they are concrete enough to be applicable to the original (set-
theoretic) problem. 

We turn now to von Neumann's work on analytic, nonpathological 
measure theory. The most original item here is the proof of the 
uniqueness of Haar measure. Compact groups are treated in [14]. 
The method (later used systematically in the study of almost periodic 
functions) involves the construction of invariant means of continuous 
functions; the key fact is the compactness of the convex closure of the 
set of all left translates of each continuous function. The extension of 
the result to locally compact groups [16] calls for completely different 
methods. The idea now is to replace a given left invariant measure m 
by a smoothed version m' that has all the assumed properties of m, 
plus the new and highly desirable property of right zero-invariance. 
The smoothed measure is defined by m'(E) ~fw(x)rn(Ex)din(x), with 
an appropriate weight function w; to say that it is right zero-invariant 
means that m'{Ex) vanishes exactly when m'{E) does. The possibility 
of passing from m to m' is used to reduce the general uniqueness 
problem for left invariant measures to the special case of right zero-
invariant measures. After the reduction, the technique is a moderately 
straightforward application of Fubini's theorem ; the secret of success 
is that the group, acting on itself by left multiplications, acts er-
godically. 

In a footnote in his 1936 paper on Haar measure von Neumann 
indicated that he knew a new proof of the Radon-Nikodym differ
entiation theorem, but he did not publish the details of that proof 
till four years later. The article [17] is devoted to the construction of 
algebras of operators with peculiar properties. When in the course 
of the construction von Neumann found that he needed some meas
ure theory, he cheerfully waded in and started writing a quick text
book on the subject. In six pages we get definitions of all the basic 
concepts (e.g., measure and measurable function) and a motivation, 
statement, and proof of the Radon-Nikodym theorem. Since the 
proof tidies up a corner of analysis in a completely satisfactory way, 
and since it deserves to be better known, we shall look at the situation 
in a little more detail. 

At the center of the stage there are three deservedly celebrated 
theorems: the Riesz-Fischer theorem (F) on the completeness of L2, 
the Radon-Nikodym theorem (N) on the differentiability of ab
solutely continuous set-functions, and the Riesz representation 
theorem (R) for bounded linear functional on L2 by means of inner 
products. None of these theorems by itself is trivial to prove; the 
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pleasant and perhaps surprising fact is that the passage from any one 
of them to the others is, comparatively speaking, child's play. Thus, 
in particular, (R) is a very easy consequence of (N) ; von Neumann's 
proof proceeds in the reverse direction and shows how to derive 
(N) from (R). 

The derivation (for finite positive measures) runs as follows. Sup
pose that m is absolutely continuous with respect to m', and write 
rn" — rn+tn'. If /(ƒ) =ffdmf then ƒ is a bounded linear functional on 
L%(m") and consequently, by (i?), 1(f) is representable in the form 
Jfgdrn". The Radon-Nikodym derivative of m with respect to m' 
i s g / ( l - g ) . 

In his lectures at the Institute for Advanced Study in 1934 von 
Neumann discussed measure theory. The mimeographed notes of 
these lectures, despite their limited circulation, were for a long time 
one of the major sources of measure-theoretic information in the 
United States. (They became more widely available fifteen years 
later, when they were reproduced and republished in more permanent 
form [19].) They contain an extremely thorough and detailed exposi
tion of the classical theory of Lebesgue measure in Euclidean spaces, 
and they contain also the generalization of the theory to abstract 
measure spaces. Except for a few technical details (e.g., the concept 
of a semiring) the work is not original. It does, however, contain 
results that it is difficult to find anywhere else. It contains, for in
stance, a study of the connection between set-functions and point-
functions (i.e., the theory of "cumulative distribution functions") in 
Rn, which is an important and complicated subject that most books 
avoid, or, at best, treat in the trivial one-dimensional case only. 

In 1940 von Neumann lectured on measure theory again. The title 
of the course was Invariant measures. The notes were typed, and at 
least one copy is in the library of the Institute for Advanced Study, 
but they were never published. The main emphasis of the course was 
on measures in locally compact spaces and groups. Four of the six 
chapters are an exposition of the by now well known results of Haar 
and Weil. The other two chapters digress from the main theme, and, 
incidentally, they contain original work. Chapter II treats generalized 
limits. The first purpose of this chapter was to serve as an auxiliary 
in the proof of the existence of Haar measure, but the treatment is 
much more comprehensive than that single application requires. 
Chapter VI contains a construction of Haar measure by means of 
"approximately equi-distributed" finite sets; some of the results of 
this chapter were obtained in collaboration with Kakutani. 
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We come now to von Neumann's work on ergodic theory. The 
major part of this work was done in the early 1930s; with one excep
tion all his publications on the subject appeared in 1932. 

Modern ergodic theory started early in 1931 with a most significant 
observation made by Koopman [3]. The observation is that the 
functional operator induced by a measure-preserving transformation 
is unitary. If, in other words, T is a measure-preserving transforma
tion on some measure space, and if for every square-integrable func
tion ƒ on that space a new square-integrable function Uf is defined 
by (Uf)(x) =f(Tx), then U is a unitary operator on L2. By this time 
von Neumann had written his epoch-making articles on operator 
theory and he knew everything about the subject that was then 
known. Koopman's observation was simultaneously a challenge and 
a hint. If there is an intimate connection between measure-preserving 
transformations and unitary operators, then the known analytic 
theory of such operators must surely give some information about 
the geometric behavior of the transformations. By October of 1931 
von Neumann had the answer; the answer was the mean ergodic 
theorem. 

As stated nowadays, the mean ergodic theorem says that if U is a 
unitary operator on a Hubert space H, then the sequence of averages 

— U+U/+ - . . + U"-*f) 
n 

is strongly convergent for every ƒ in H. (The mean ergodic theorem 
also says something about what the limit has to be, and the con
vergence assertion can just as well be made for suitable one-parameter 
families {lit) in place of the sequences { Un}. These refinements are 
irrelevant in a summary such as the present one and will be sys
tematically ignored.) In von Neumann's first note [8] on the subject 
the theorem was not stated in this abstract form; he emphasized the 
measure-theoretic roots of the result throughout. A reader of the 
note could have followed the entire argument, involving continual 
references to the underlying measure space, without ever becoming 
aware that the proof proved a more abstract theorem than the state
ment stated. 

Shortly after von Neumann proved the mean ergodic theorem he 
discussed it with G. D. Birkhoff, and shortly after that Birkhoff 
proved the "individual" ergodic theorem [ l ] . (The order of events as 
here stated would be impossible to guess from the dates appearing 
on the various publications; the priority situation is explained in a 
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subsequent note [2] of Birkhoff and Koopman.) The difference be
tween von Neumann's result and BirkhofFs is easy to describe; the 
former states that for suitable functions the sequence of averages 

- (ƒ(*) +f(Tx) + • • • + f(T^x)) 
n 

is convergent in the mean of order 2, whereas the latter states that 
the same sequence is convergent for almost every x. Thus BirkhofFs 
result is inextricably tied up with measure; von Neumann's can be 
(and repeatedly has been) generalized to Banach spaces and other 
axiomatic contexts. I t is therefore curious, but true, that von Neu
mann always looked at ergodic theory as a part of measure theory ; he 
never worked on the abstract versions. What fascinated him most 
was the delicate interplay between measure and spectrum. The 
ergodic theorem itself (mean or individual) was almost never needed 
in his later work; its main role was that of historical justification for 
studying measure-preserving transformations. 

To understand the nature of von Neumann's profound insights 
into the structure of measure-preserving transformations, let us look 
a t some of the most striking and typical ones. For simplicity of state
ment we restrict attention to measure spaces of total measure 1 ; with 
a little care many of the results can be extended to infinite spaces. 

Associated with every measure space there is a measure algebra, 
namely the Boolean algebra of measurable sets modulo sets of meas
ure zero. A measure-preserving transformation of the space induces 
in a natural way a measure-preserving automorphism of the algebra. 
In highly pathological measure spaces it can happen [18 ] that the 
space has fewer transformations than the algebra has automorphisms, 
i.e., that not every measure-preserving automorphism is induced by a 
measure-preserving transformation. If the underlying measure space 
is subjected to some rather reasonable topological and metric condi
tions, then the pathology cannot happen. Von Neumann's proof of 
this useful fact [ l l ] is a frightfully complicated set-theoretic argu
ment. The result has not yet been improved in any essential way. 

The most interesting measure-preserving transformations are the 
ergodic ones; ergodicity is the natural measure-theoretic generaliza
tion of the concept of transitivity that occurs in the theory of per
mutation groups. (To be precise, T is ergodic if and only if the only 
measurable sets invariant under T are the sets of measure zero and 
their complements.) In his longest and most diversified paper on 
ergodic theory [12] von Neumann showed that on suitably restricted 
spaces every measure-preserving transformation can be decomposed 
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into ergodic pieces. The theorem is a forerunner of many such de
composition (or "direct integral") theorems. 

The mixing theorem (obtained in collaboration with Koopman 
[9]) is a typical example of the measure-versus-spectrum type of 
result; it asserts that a geometric property of T (mixing) is equivalent 
to a spectral property of U (no non trivial proper values). In some
what informal but quite suggestive language, the mixing theorem 
says that a necessary and sufficient condition that each pair of sets 
be eventually stochastically independent is that the spectrum be 
essentially continuous. 

There is also a beautiful result about the very opposite situation 
in which U has pure point spectrum (i.e., L% has an orthonormal 
basis consisting of proper vectors of U). For ergodic transformations 
of this kind it turns out [12] that the spectrum, which is always a 
subset of the set of complex numbers of modulus 1, is in fact a sub
group of the multiplicative group of such numbers, and every such 
subgroup is the spectrum of some such transformation. Even more is 
true; the Koopman program is really fulfilled here. If both S and T 
satisfy the conditions (ergodic, pure point spectrum) then a necessary 
and sufficient condition for the measure-theoretic isomorphism of S 
and T is the unitary equivalence of the corresponding unitary opera
tors. In other words, for a special but large class of transformations 
the analytic (operator) methods give complete information about the 
geometric (transformation) questions. 

This concludes our summary of von Neumann's contributions to 
measure and ergodic theory. In quantity these contributions amount 
roughly to one tenth of von Neumann's scientific publications. As to 
their quality, it seems to be safe to say that if von Neumann had 
never done anything else, they would have been sufficient to guaran
tee him mathematical immortality. 

BIBLIOGRAPHY 

[Except for three notes by Birkhoff and Koopman, added for historical reasons, 
what follows is a complete list of von Neumann's publications on measure theory and 
on the mathematical aspects of ergodic theory. Not every item in the list is referred 
to in the text.] 

1. G. D. Birkhoff, Proof of the ergodic theorem, Proc. Nat. Acad. Sci. vol. 17 (1931) 
pp. 656-660. 

2. G. D. Birkhoff and B. O. Koopman, Recent contributions to the ergodic theory, 
Proc. Nat. Acad. Sci. vol. 18 (1932) pp. 279-282. 

3. B. O. Koopman, Hamiltonian systems and transformations in Hilbert space, 
Proc. Nat. Acad. Sci. vol. 17 (1931) pp. 315-318. 

4. John von Neumann, Die Zerlegung eines Intervalles in abzahlbar viele kongruente 
Teilmengen, Fund. Math. vol. 11 (1928) pp. 230-238. 



94 P. R. HALMOS 

5. , Zur allgemeinen Theorie des Masses, Fund. Math. vol. 13 (1929) pp. 
73-116. 

6. , Zusatz zur Arbeit "Zur allgemeinen Theorie des Masses," Fund. Math. 
vol. 13 (1929) p. 333. 

7. , Algebraïsche Reprasentanten der Funktionen (lbis auf eine Menge vom 
Masse Null,'1 J. Reine Angew. Math. vol. 165 (1931) pp. 109-115. 

8. , Proof of the quasi-ergodic hypothesis, Proc. Nat. Acad. Sci. vol. 18 
(1932) pp. 70-82. 

9. and B. O. Koopman, Dynamical systems of continuous spectra, Proc. 
Nat. Acad. Sci. vol. 18 (1932) pp. 255-263. 

10. , Physical applications of the ergodic hypothesis, Proc. Nat. Acad. Sci. 
vol. 18 (1932) pp. 263-266. 

11. , Einige Sdtze über messbare Abbildungen, Ann. of Math. vol. 33 (1932) 
pp. 574-586. 

12. , Zur Operatorenmethode in der klassischen Mechanik, Ann. of Math. 
vol. 33 (1932) pp. 587-642. 

13. , Zusatze zur Arbeit uZur Operatorenmethode . . . ," Ann. of Math. vol. 
33 (1932) pp. 789-791. 

14. , Zum Haarschen Mass in Topologischen Gruppen, Compositio Math. 
vol. 1 (1934) pp. 106-114. 

15# anc[ M. H. Stone, The determination of representative elements in the 
residual classes of a Boolean algebra, Fund. Math. vol. 25 (1935) pp. 353-378. 

16. , The uniqueness of Haar's measure, Mat. Sbornik vol. 1 (1936) pp. 
721-734. 

17# f Qn ringS 0f operators. I l l , Ann. of Math. vol. 41 (1940) pp. 94-161. 
13# a n ( j p# R# Halmos, Operator methods in classical mechanics, II, Ann. of 

Math. vol. 43 (1942) pp. 332-350. 
19# 1 Functional operators. I. Measures and integrals, Princeton, 1950. 

UNIVERSITY OF CHICAGO AND 

INSTITUTE FOR ADVANCED STUDY 


