
VON NEUMANN'S CONTRIBUTIONS TO 
QUANTUM THEORY 

LÉON VAN HOVE 

That von Neumann has been "par excellence" the mathematician 
of quantum mechanics is as obvious to every physicist now as it was 
a quarter of a century ago. Quantum mechanics was very fortunate 
indeed to attract, in the very first years after its discovery in 1925, 
the interest of a mathematical genius of von Neumann's stature. As 
a result, the mathematical framework of the theory was developed 
and the formal aspects of its entirely novel rules of interpretation 
were analyzed by one single man in two years time (1927-1929). 
Conversely, one could almost say in reciprocity, quantum mechanics 
introduced von Neumann into a field of mathematical investigation, 
operator theory, in which he achieved some of his most prominent 
successes. 

Von Neumann's major contributions to quantum mechanics are 
his development of the mathematical framework of the theory and 
his formal study of quantum statistics, quantum measuring processes 
and their interrelations. Whereas the latter study was essentially 
complete in 1927 (except for the quantum ergodic theorem of 1929) 
the work on the mathematical foundations of quantum mechanics 
came to its culmination in 1929 with the spectral theorem for hyper-
maximal symmetric operators in Hubert space. In the next two para
graphs we shall discuss these major contributions. 

The mathematical framework of quantum theory. By the time von 
Neumann started his investigations on the formal framework of 
quantum mechanics this theory was known in two different mathe
matical formulations: the "matrix mechanics" of Heisenberg, Born 
and Jordan, and the "wave mechanics" of Schrödinger. The mathe
matical equivalence of these formulations had been established by 
Schrödinger, and they had both been embedded as special cases in a 
general formalism, often called "transformation theory," developed 
by Dirac and Jordan. This formalism, however, was rather clumsy 
and it was hampered by its reliance upon ill-defined mathematical 
objects, the famous delta-functions of Dirac and their derivatives. 
Although von Neumann himself attempted at first, in collaboration 
with Hilbert and Nordheim [ l ] , to edify the quantum-mechanical 
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formalism along similar lines, he soon realized that a much more 
natural framework was provided by the abstract, axiomatic theory of 
Hubert spaces and their linear operators [2], This mathematical 
formulation of quantum mechanics, whereby states of the physical 
system are described by Hubert space vectors and measurable quan
tities by hermitian operators acting upon them, has been very suc
cessful indeed. Unchanged in its essentials it has survived the two 
great extensions which quantum theory was to undergo soon: the 
relativistic quantum mechanics of particles (Dirac equation) and the 
quantum theory of fields. 

One might of course remark that Dirac's delta functions and their 
derivatives, although poorly defined at the time of their introduction, 
have been recognized since as bona fide mathematical entities in L. 
Schwartz' theory of distributions. This is quite true and moreover 
these functions have been used continually by physicists throughout 
the development of quantum theory, in particular in the last two 
decades for the study of scattering processes and of quantized fields. 
Delta functions have established themselves as the natural tool when
ever operators with continuous spectra are to be considered. This 
does not affect in any way, however, the fact that the axiomatically 
defined separable Hubert space is the suitable framework for the 
quantum-mechanical formalism as we know it today, and the recog
nition of this fact we owe to von Neumann. 

An essential feature of the Hubert space formulation of quantum 
theory is that the most important physical quantities as position, 
momentum or energy are represented by unbounded hermitian oper
ators. Since the theoretical prediction of measurements makes es
sential use of the spectral resolution of the operators representing the 
physical quantities, von Neumann was, in his very first investiga
tion [2], faced with the problem of extending to the unbounded case 
the known spectral theory of bounded hermitian operators. By 1929 
he had brought this problem to a complete solution [3]. He intro
duced the all-important concept of hypermaximal symmetric oper
ator, being the most general hermitian operator with a spectral reso
lution. This work, the results of which were reached independently 
by M. H. Stone [4], was for von Neumann the starting point of a 
long series of investigations on linear operators in Hubert space. 

Still another contribution of von Neumann to the mathematical 
foundation of quantum theory is worth mentioning here. He estab
lished the important theorem that (in the irreducible case and after 
a suitable reformulation) the canonical commutation rules QjPi—PiQj 
~% idji determine the operators Qu • • • , Qn, Pi , • • • , P» uniquely 
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except for an arbitrary transformation [5], Although rarely quoted 
as such, this theorem, which was already known to Dirac and Stone 
[ó], is really fundamental for the understanding of many quantum-
mechanical investigations where the theoretical analysis is exclusively 
based on the canonical commutation rules in their above form or in 
the equivalent field-theoretical form 

Ai Af - At A, = Mjh 2™ A, = P, - iQ,. 

Statistical aspects of quantum theory. In the course of his formula
tion of quantum mechanics in terms of vectors and operators of Hu
bert space von Neumann also gave in complete generality the basic 
statistical rule of interpretation of the theory. This rule concerns 
the result of the measurement of a given physical quantity on a sys
tem in a given quantum state and expresses its probability distribu
tion by means of a simple and now completely familiar formula in
volving the vector representing the state and the spectral resolution 
of the operator which represents the physical quantity [2]. This 
statistical rule, originally proposed by Born in 1926, was for von 
Neumann the starting point of a mathematical analysis of quantum 
mechanics in entirely probabilistic terms. The analysis, carried out 
in a paper of 1927 [7], introduced the concept of statistical matrix 
for the description of an ensemble of systems which are not necessarily 
all in the same quantum state. The statistical matrix (now often 
called p-matrix although von Neumann's notation was U) has become 
one of the major tools of quantum statistics and it is through this 
contribution that von Neumann's name became familiar to even the 
least mathematically minded physicists. 

In the same paper von Neumann also investigates a problem which 
is still now the subject of much discussion, viz., the theoretical de
scription of the quantum-mechanical measuring process and of the 
noncausal elements which it involves. Mathematically speaking von 
Neumann's study of this delicate question is quite elegant. I t pro
vides a clear-cut formal framework for the numerous investigations 
which were needed to clarify physically the all-important implications 
of quantum phenomena for the nature of physical measurements, the 
most essential of which is Niels Bohr's concept of complementarity. 

The results of the paper just discussed were immediately used by 
the author to lay the foundation for quantum thermodynamics [8]. 
He gave the quantum analogue 

S = — k Sp (p In p), p statistical matrix, 

of the well known classical formula for the entropy 
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S = — k I flnfdcoj ƒ distribution f unction in phase space. 

He further wrote down the density matrix for a canonical ensemble 
at temperature T: 

p = Z~l exp (~H/kT), Z = Sp [exp ( - # / & r ) ] , 

H being the Hamilton operator. Two years later von Neumann came 
back to quantum thermodynamics with a contribution to a much 
more difficult problem : the formulation and proof of an ergodic theo
rem for quantum systems [9]. The basic principle of this work is to 
define quantum analogues of cells in phase space by considering sets 
of quantum states for which all macroscopic quantities have given 
values within a certain inaccuracy. One further considers the unitary 
transformation u relating these quantum states to the eigenstates of 
the hamiltonian. The ergodicity is then established for "almost every" 
value of the transformation u. Although the latter restriction is a 
rather unsatisfactory one from the physical standpoint, one must 
consider von Neumann's ergodic theorem as one of the very few im
portant contributions to a most difficult subject which even now is 
far from complete clarification. 

Most of the work we have briefly reviewed has been republished 
by the author, in greatly expanded form, as a book which rapidly 
became and still is the standard work on the mathematical founda
tions of quantum mechanics [lO]. Von Neumann devoted in his book 
considerable attention to a point which had not been discussed in 
the 1927 papers and which was later the subject of much controversy. 
I t is the question of the possible existence of "hidden variables," the 
consideration of which would eliminate the noncausal element in
volved in the measuring process. Von Neumann could show that 
hidden parameters with this property cannot exist if the basic struc
ture of quantum theory is retained. Although he mentioned the latter 
restriction explicitly,1 his result was often quoted without due 
reference to it, a fact which sometimes gave rise to unjustified criti
cism in the many discussions devoted through the years to the pos
sibility of an entirely deterministic reformulation of quantum theory. 

Other contributions. As von Neumann's complete bibliography 
will reveal, he wrote quite a few other papers on questions of quantum 
mechanics, often in collaboration with physicists, especially with 
Wigner. Most of these papers deal with technical matters and the 

1 See e.g. ref. 10, p. 109, line 17 and foil. 
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importance of the major contributions discussed above is so eminent 
that, in comparison, the other papers* scope is modest. There is only 
one broad subject which we would like to mention here, because von 
Neumann, obviously giving it considerable thought, returned to it 
several times in 1934 and 1936 (in collaboration with Jordan, Wigner 
and Garrett Birkhoff). I t is the question of the algebraic and logical 
structure of quantum mechanics, where the hope has existed to reach 
through abstract analysis possible generalizations of the accepted 
theory. Nobody knows whether such a hope is justified, but it is un
doubtedly a natural one and it has appealed to many other people, 
giving one more example of the power and originality of von Neu
mann's thinking. 
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