ON ISOMORPHISMS OF GROUP ALGEBRAS

BY WALTER RUDIN

Communicated March 7, 1958

With every locally compact topological group G there is associated its group algebra $L(G)$, the space of all complex Haar-integrable functions on G with convolution as multiplication. Considerable work has been done toward discovering the extent to which the algebraic structure of $L(G)$ determines G (see [1; 2; 5]), but some very specific questions have been left unanswered. For instance: Is the group algebra of the circle isomorphic to that of the torus? The theorem announced here stems from this question.

Theorem. The group algebra of a locally compact topological group T is isomorphic to that of the circle group C if and only if T is a direct sum $C+F$, where F is a finite abelian group.

The proof leans heavily on that of Theorem 1 of [4]. In the outline below we will mainly be concerned with pointing out the changes in [4] which are needed to yield the stated result.

If $L(T)$ and $L(C)$ are isomorphic, then T is abelian, and the dual group Γ of T is homeomorphic to \mathbb{Z}, the group of all integers (the dual group of C) [2, p. 478]. Thus Γ is discrete and countable, and T is a compact abelian group with countable base.

Abelian groups will be written additively; for $x \in T$ and $\phi \in \Gamma$ the symbol (x, ϕ) will stand for the value of the character ϕ at the point x; the Haar measure on T will be denoted by m.

Lemma 1. Corresponding to every $E \subset T$ with $m(E) > 0$, there is only a finite set of characters ϕ such that, for all $x \in E$,

$$1 - (x, \phi) < 1.$$

Note that (1) holds if and only if the real part of (x, ϕ) exceeds $1/2$. If f is the characteristic function of E and if ϕ satisfies (1), then $\left| \int_T (x, \phi)f(x)dx \right| > m(E)/2$, and the lemma follows from the Bessel inequality.

Lemma 2. Every infinite subset A of Γ contains an infinite subset B, such that for some $x \in T$ the inequality

$$\left| 1 - (x, \phi) \right| \geq 1$$

holds for every $\phi \in B$.

1 Research Fellow of the Alfred P. Sloan Foundation.
This is proved by repeated application of Lemma 1.

If now ψ is an isomorphism of $L(T)$ onto $L(C)$, ψ can be extended to an isomorphism of the measure algebras $M(T)$ and $M(C)$, and [2, p. 479] there is a one-to-one mapping α of J onto Γ such that the Fourier-Stieltjes coefficients of $\psi(\mu)$ are

$$c_n(\psi(\mu)) = \int_T (-x, \alpha(n)) d\mu(x) \quad (n \in J, \mu \in M(T)).$$

For $x \in T$, let e_x be the measure of mass 1 which is concentrated at x, and put $\mu_x = \psi(e_x)$. Then $c_n(\mu_x) = (-x, \alpha(n))$, and

$$\mu_x \ast \mu_y = \mu_{x+y} \quad (x, y \in T).$$

The mapping $x \mapsto \mu_x$ is thus an isomorphism of T into $M(C)$.

The discrete parts λ_x of μ_x also satisfy (4), and there is a mapping β of J into Γ such that

$$c_n(\lambda_x) = (-x, \beta(n)) \quad (n \in J, x \in T);$$

the lemma used in Step 5 of [4] must here be applied to $C \times T$ in place of $C \times C$. Since λ_x is discrete, $c_n(\lambda_x)$ is an almost periodic function on J, for each $x \in T$. Arguing as in Step 6 of [4], we find that there is a positive integer k and a set $E \subset T$ with $m(E) > 0$, such that

$$|1 - (x, b(n))| < 1 \quad (n \in J, x \in E),$$

where $b(n) = \beta(n+k) - \beta(n)$. By Lemma 1, the sequence $\{b(n)\}$ has only a finite set of values, so that the almost periodicity of $\{(x, b(n))\}$ implies that $\{(x, b(n))\}$ is actually periodic, for every $x \in T$. A compactness argument now shows that $\{b(n)\}$ is itself periodic, with period p, say. If $q = kp$, it follows that

$$\beta(n + q) + \beta(n - q) = 2\beta(n) \quad (n \in J).$$

Next we put $\tau_x = (\lambda_x - \mu_x) \ast \lambda_{-x}$, so that

$$c_n(\tau_x) = 1 - (x, \gamma(n)) \quad (n \in J, x \in T),$$

where $\gamma(n) = \beta(n) - \alpha(n)$. Since the measures τ_x are continuous,

$$\lim_{N \to \infty} \frac{1}{2N} \sum_{-N}^{N} c_n(\tau_x) = 0 \quad (x \in T).$$

These averages are uniformly bounded on T, so that (9) may be integrated; combined with (8), this implies that $\gamma(n) = 0$ except possibly on a set $S \subset J$ of density 0.

Thus if S is infinite, S contains an infinite set $\{n_k\}$ such that none
of the integers \(n_k + 1, n_k + 2, \cdots, n_k + k \) belong to \(S \), and by Lemma 2 there is an \(x \in T \) and a subsequence of \(\{ n_k \} \), again denoted by \(\{ n_k \} \), such that \(|c_{n_k}(\tau_x)| \geq 1 \). A subsequence of the measures

\[
d\sigma_k(\theta) = e^{-in_k\theta}d\tau_x(\theta)
\]

then converges weakly to a singular measure \(\sigma \) [3, p. 236] with \(|c_0(\sigma)| \geq 1 \) but \(c_n(\sigma) = 0 \) for all \(n > 0 \). This is impossible, so that \(S \) is finite.

It follows that \(\alpha = \pi \beta \), where \(\beta \) satisfies (7) and maps \(J \) onto \(\Gamma \), and \(\pi \) is a permutation of \(\Gamma \) which moves only a finite number of terms; \(\beta \) maps each residue class mod \(q \) onto an arithmetic progression in \(\Gamma \); hence \(\Gamma \) is finitely generated and is therefore a direct sum of a finite set of cyclic groups; since \(\Gamma \) is the union of a finite set of arithmetic progressions, only one of the direct summands can be infinite, so that \(\Gamma \) is a direct sum of \(J \) and a finite abelian group \(F \).

This proves one half of the theorem. The converse may be proved by defining

\[
\alpha(nq + k) = (n, f_k) \quad (n \in J, 1 \leq k \leq q),
\]

where \(f_1, \cdots, f_q \) are the elements of \(F \); it is easily verified that this induces, via (3), an isomorphism of \(L(T) \) onto \(L(C) \). In fact, every \(\alpha \) of the above form \(\alpha = \pi \beta \) has this property, as can be seen by an argument analogous to that on p. 50 of [4].

References