Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Integral representations for Markov transition probabilities


Author: David G. Kendall
Journal: Bull. Amer. Math. Soc. 64 (1958), 358-362
DOI: https://doi.org/10.1090/S0002-9904-1958-10230-X
MathSciNet review: 0126880
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. M. Kac, Random walk and the theory of the Brownian motion, Amer. Math. Monthly vol. 54 (1947) pp. 369-391. MR 21262
  • 2. S. Karlin and J. L. McGregor, Representation of a class of stochastic processes, Proc. Nat. Acad. Sci. U.S.A. vol. 41 (1955) pp. 387-391. MR 71665
  • 3. D. G. Kendall, Unitary dilations of Markov transition operators, and the corresponding integral representations for transition-probability matrices, to appear in the volume Surveys in probability and statistics dedicated to Harald Cramér (edited by U. Grenander), Stockholm, Almqvist and Wiksell. MR 116389
  • 4. D. G. Kendall, Unitary dilations of one-parameter semigroups of Markov transition operators, and the corresponding integral representations for Markov processes with a countable infinity of states, to appear. MR 116390
  • 5. D. G. Kendall, Geometric ergodicity in the theory of queues, to appear.
  • 6. A. Kolmogoroff, Zur Theorie der Markoffschen Ketten, Math. Ann. 112 (1936), no. 1, 155–160 (German). MR 1513044, https://doi.org/10.1007/BF01565412
  • 7. W. Ledermann and G. E. H. Reuter, Spectral theory for the differential equations of simple birth and death processes, Philos. Trans. Roy. Soc. London Ser. A vol. 246 (1954) pp. 321-369. MR 60103
  • 8. E. Reich, Waiting times when queues are in tandem, Ann. Math. Statist. vol. 28 (1957) pp. 768-773. MR 93060
  • 9. B. Sz.-Nagy, Prolongements des transformations de l'espace de Hilbert qui sortent de cet espace, Appendix, 1955, to F. Riesz and B. Sz.-Nagy, Leçons d'analyse fonctionnelle, Budapest, 1952.


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1958-10230-X

American Mathematical Society