Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

Solution of the equation $ze^z = a$


Author: E. M. Wright
Journal: Bull. Amer. Math. Soc. 65 (1959), 89-93
DOI: https://doi.org/10.1090/S0002-9904-1959-10290-1
MathSciNet review: 0129130
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. Richard Bellman, On the existence and boundedness of solutions of non-linear differential-difference equations, Ann. of Math. (2) 50 (1949), 347–355. MR 0030106, https://doi.org/10.2307/1969460
  • 2. G. Eisenstein, J. Reine Angew. Math. vol. 28 (1844) pp. 49-52.
  • 3. L. Euler, Opera Omnia (i) vol. 15, Leipzig and Berne, 1927, pp. 268-297.
  • 4. N. D. Hayes, Roots of the transcendental equation associated with a certain difference-differential equation, J. London Math. Soc. 25 (1950), 226–232. MR 0036426, https://doi.org/10.1112/jlms/s1-25.3.226
  • 5. N. D. Hayes, The roots of the equation 𝑥=(𝑐𝑒𝑥𝑝)ⁿ𝑥 and the cycles of the substitution (𝑥|𝑐𝑒^{𝑥}), Quart. J. Math., Oxford Ser. (2) 3 (1952), 81–90. MR 0048556, https://doi.org/10.1093/qmath/3.1.81
  • 6. A. Hurwitz and R. Courant, Funktionentheorie, 3d ed., Berlin, 1929, pp. 141-142.
  • 7. E. M. Lémeray, Nouv. Ann. de Math. (3) vol. 15 (1896) pp. 548-556 and vol. 16 (1896) pp. 54-61.
  • 8. E. M. Lémeray, Proc. Edinburgh Math. Soc. vol. 16 (1897) pp. 13-35.
  • 9. O. Polossuchin, Thesis, Zurich, 1910.
  • 10. F. Schürer, Ber. Verh. Sachs. Akad. Wiss. Leipzig Math.-phys. Kl. vol. 64 (1912) pp. 167-236 and vol. 65 (1913) pp. 239-246.
  • 11. E. M. Wright, Iteration of the exponential functions, Quart. J. Math., Oxford Ser. 18 (1947), 228–235. MR 0022912
  • 12. E. M. Wright, A non-linear difference-differential equation, J. Reine Angew. Math. 194 (1955), 66–87. MR 0072363, https://doi.org/10.1515/crll.1955.194.66


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1959-10290-1