Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

The homology of cyclic products


Author: Richard G. Swan
Journal: Bull. Amer. Math. Soc. 65 (1959), 125-127
DOI: https://doi.org/10.1090/S0002-9904-1959-10289-5
MathSciNet review: 0117723
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. N. Bourbaki, Algèbre multilinéare, Paris, Hermann et Cie, Part 1, Book 2, Chapter 3, Appendix 3, 1948. MR 26989
  • 2. M. Nakaoka, Cohomology theory of a complex with a transformation of prime period and its applications, J. Inst. Polytech. Osaka City Univ. Ser. A vol. 7 (1956) pp. 51-102. MR 91462
  • 3. M. Richardson, On the homology characters of symmetric products, Duke Math. J. vol. 1 (1935) pp. 50-69. MR 1545864
  • 4. M. Richardson and P. A. Smith, Periodic transformations of complexes, Ann. of Math. vol. 39 (1938) pp. 611-633. MR 1503428
  • 5. P. Samuel, Universal mappings and free topological groups, Bull. Amer. Math. Soc. vol. 54 (1948) pp. 591-598. MR 25152
  • 6. S. K. Stein, Homology of the two fold symmetric product, Ann. of Math. vol. 59 (1954) pp. 570-583. MR 61826
  • 7. T. Yoshioka, Base canonique d'homologie du produit d'ordre p d'un complexe fini (p premier impair), Osaka Math. J. vol. 10 (1958) pp. 11-29. MR 96217


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1959-10289-5

American Mathematical Society