CIRCUMSCRIBED CUBES IN EUCLIDEAN n-SPACE

BY S. S. CAIRNS

Communicated by R. H. Bing, May 20, 1959

Let E^n be a euclidean n-space with a rectangular cartesian coordinate system $(x) = (x_1, \ldots, x_n)$, and let (y) be any system which is a rotation of (x). Let $A \subseteq E^n$ be a closed bounded set containing $n+1$ linearly independent points. Its circumscribed (y)-box is the set $[a_i, b_i] \subseteq \mathbb{R}$ ($i = 1, \ldots, n$) where a_i and b_i are the respective minimum and maximum values of y_i on A. Let $c_i = b_i - a_i$ be interpreted as a function on the space \mathbb{R}^{n-1} of rotations of coordinate systems, which is also the rotation space of the unit $(n-1)$-sphere $S^{n-1} \subseteq E^n$.

Let $f: \mathbb{R}^{n-1} \to E^n$ be the function which maps $r \in \mathbb{R}^{n-1}$ onto the point $(c_1(r), \ldots, c_n(r))$, relative to the fixed initial coordinate system (x). Let D be the diagonal $x_1 = \ldots = x_n$ in E^n. The circumscribed (y)-box corresponding to a point $r \in \mathbb{R}^{n-1}$ is an n-cube if and only if $f(r) \in D$. Accordingly, $K = f^{-1}(D)$, a subspace of \mathbb{R}^{n-1}, will be called the space of circumscribed n-cubes of A. Its structure can be studied by means of the mapping f. For the purpose of this study the significant properties are as follows: (1) f is a continuous mapping of \mathbb{R}^{n-1} into the region $x_i > 0$ ($i = 1, \ldots, n$) of E^n (2) $f(\mathbb{R}^{n-1})$ is symmetric with respect to D. This second property follows from the fact that all possible permutations of axial directions can be achieved in a symmetric way through rotations. There is no need to distinguish between the two possible senses on a given y_i-direction, since the value of c_i is the same for both. Hence, one gets odd as well as even permutations of the c_i's.

Let T^{n-1} be the simplex in E^n with vertices at the unit points on the (x)-axes. A central projection from the origin carries the mapping f into a continuous mapping $g: \mathbb{R}^{n-1} \to T^{n-1}$ where $g(\mathbb{R}^{n-1})$ is symmetric in the barycentric coordinates on T^{n-1}. The inverse image $g^{-1}(q)$, where q is the barycenter of T^{n-1}, is identical with $f^{-1}(D) = K$. This leads to the following result.

Theorem. The space of circumscribed cubes of a closed subset of euclidean n-space containing $n+1$ independent points is the inverse image $K = g^{-1}(q)$ of the center of an $(n-1)$-simplex T^{n-1} under a continuous mapping $g: \mathbb{R}^{n-1} \to T^{n-1}$, where \mathbb{R}^{n-1} is the rotation space of an $(n-1)$-sphere and where $g(\mathbb{R}^{n-1})$ is symmetric in the barycentric coordinates on T^{n-1}.

Any particular circumscribed n-cube is the (y)-cube for a system (y) obtainable from (x) without rotating any axis by more than
\[\pi/2.\] A smaller number than \(\pi/2\) can be used. Thus all the \(n\)-cubes, but not all the rotations yielding them, correspond to points of \(K \cap Q^m\) where \(Q^m \subset R_n\) is an \(m\)-cell of dimension \(m = (n^2 - n)/2\), the dimension of \(R_n\), and where \(Q^m\) can be so selected that \(g(Q^m)\) is symmetric in the barycentric coordinates on \(T_n\).

The intersection \(K \cap Q^m\) is the inverse image of \(q^m\) under the symmetric mapping \(g: Q^m \to T_n\) of a closed \(m\)-cell into a closed \((n - 1)\)-cell. This leads to the conclusion that \(K\) is of dimension at least \(m - (n - 1) = (n - 1)(n - 2)/2\), which is the dimension of the rotation space \(R_{n-2}\) of the \((n - 2)\)-sphere. It is conjectured that \(K\) contains a subspace homeomorphic to \(R_{n-2}\), a conjecture easily established for \(n = 3\). Thus, there exists at least a 1-circuit of circumscribed cubes in the three-dimensional case.

These results strengthen the existence theorems of Kakutani [1] in three dimensions and of Yamabe and Yujobô [2] in \(n\) dimensions.

The above is an outline of material being written up in detail for publication elsewhere.

Bibliography

University of Illinois