AN ARITHMETICAL INVERSION PRINCIPLE

BY ECKFORD COHEN

Communicated by G. B. Huff, July 6, 1959

Let \(f(n, r) \) represent an even function of \(n \) (mod \(r \)); that is, \(f(n, r) = f((n, r), r) \) for all integers \(n \) and a positive integral variable \(r \). The following inversion relation is proved in [2]. If \(r = r_1r_2 \) and \(f(n, r) \) is even (mod \(r \)), then

\[
g(r_1, r_2) = \sum_{d|r_1} f\left(\frac{r_1}{d}, r\right) \mu(d) \Leftrightarrow f(n, r) = \sum_{d|r} g\left(d, \frac{r}{d}\right),
\]

where \(\mu(r) \) denotes the Möbius function. This relation can be easily verified on the basis of the definition of even function (mod \(r \)) and the characteristic property of \(\mu(r) \),

\[
\sum_{d|r} \mu(d) = \varepsilon(r) = \begin{cases} 1 & (r = 1), \\ 0 & (r > 1). \end{cases}
\]

We now state a generalization of (1). Let \(\xi(r) \) and \(\eta(r) \) be arithmetical functions satisfying

\[
\sum_{d|r} \xi(d)\eta(\delta) = \varepsilon(r).
\]

The following theorem can be proved in the same manner as (1), with (3) used in place of (2).

Theorem 1. If \(r = r_1r_2 \) and \(f(n, r) \) is even (mod \(r \)), then

\[
g(r_1, r_2) = \sum_{d|r_1} f\left(\frac{r_1}{d}, r\right) \eta(d) \Leftrightarrow f(n, r) = \sum_{d|r} g\left(d, \frac{r}{d}\right) \xi(\delta).
\]

Clearly (4) reduces to (1) in case \(\xi(r) = 1, \eta(r) = \mu(r) \). The case \(\xi(r) = \mu(r), \eta(r) = 1 \) yields the following dual of (1).

Theorem 2. If \(r = r_1r_2 \) and \(f(n, r) \) is even (mod \(r \)), then

\[
g(r_1, r_2) = \sum_{d|r_1} f\left(\frac{r_1}{d}, r\right) \mu(d) \Leftrightarrow f(n, r) = \sum_{d|r} g\left(d, \frac{r}{d}\right) \xi(\delta).
\]

An immediate consequence of Theorem 2 is

Corollary 2.1. For every arithmetical function \(g(r_1, r_2) \) of two positive integral variables \(r_1, r_2 \), there exists a uniquely determined even function (mod \(r \), \(f(n, r) \), such that \(g(r_1, r_2) \) is expressible as a divisor sum (5) with respect to \(f(n, r) \).
The relation (1) is applied in [2] to give a new proof of the Anderson-Apostol generalization [1] of the Hölder formula,

\[\frac{\phi(r) \mu(m)}{\phi(m)} = \sum_{d \mid (n, r)} d \mu \left(\frac{r}{d} \right), \quad \left(m = \frac{r}{(n, r)} \right), \]

where \(\phi(r) \) represents the Euler \(\phi \)-function. The following analogue of the generalized Hölder relation can be proved in a similar manner, with (5) replacing (1) in the proof.

Let \(g(r) \) and \(h(r) \) denote arithmetical functions, and define

\[f(n, r) = \sum_{d \mid (n, r)} h(d) g \left(\frac{r}{d} \right) \mu^2 \left(\frac{r}{d} \right) \mu(\delta), \quad F(r) = f(0, r). \]

Theorem 3. If \(g(r) \) is multiplicative and \(h(r) \) is completely multiplicative, and if \(f \), for all primes \(p \), \(h(p) \neq 0 \), \(g(p) \neq h(p) \), then

\[\frac{F(r)g(m)\mu^2(m)}{F(m)} = f(n, r), \quad \left(m = \frac{r}{(n, r)} \right). \]

Application of (8), with \(h(r) = r, g(r) = 1 \), in connection with the Dedekind-Liouville formula,

\[\phi(r) = \sum_{d \mid r} \mu(d) / d, \]

yields the following analogue of Hölder’s formula (6):

Corollary 3.1.

\[\frac{\phi(r) \mu^2(m)}{\phi(m)} = \sum_{d \mid r, d \mid (n, r)} d \mu^2(e) \mu(\delta), \quad \left(m = \frac{r}{(n, r)} \right). \]

Similarly, with \(h(r) = 1, g(r) = \mu(r) / \phi(r) \) in (8) it follows, on applying Landau’s identity,

\(r / \phi(r) = \sum_{d \mid r} \mu^2(d) / \phi(d) \), that

Corollary 3.2.

\[\frac{(n, r) \mu(m)}{\phi(r)} = \sum_{d \mid (n, r), \phi(d) \mu(\delta)} \frac{\mu(e) \mu(\delta)}{\phi(e)}, \quad \left(m = \frac{r}{(n, r)} \right). \]

Other potentially useful relations can be derived in a similar manner.

Bibliography

University of Tennessee