ON INDEPENDENT GROUP CHARACTERS

BY D. A. EDWARDS

Communicated by Einar Hille, July 29, 1959

The theorem proved in this note, when taken in conjunction with the theory of the Bohr compactification of a locally compact abelian group (for which see [1]), provides density theorems for group characters which generalize the classical Kronecker and Kronecker-Weyl approximation theorems. The theorems thus obtained are in several respects extensions of those of Bundgaard [2]. An account of them will appear elsewhere.

If G is a locally compact abelian group then a character of G will be taken here to mean a continuous homomorphism χ of G into the circle group T. If G is discrete then its character group $H = G^*$ is compact and carries a unique Haar measure μ such that $\mu(H) = 1$. If \mathcal{B} is the class of Borel subsets of H then (H, \mathcal{B}, μ) is a probability field in the sense of Kolmogorov [3], and, for each $g \in G$, the function $\chi \mapsto \chi(g)$ on H into T is a character of H, and is a fortiori a random variable for (H, \mathcal{B}, μ).

If $\mathcal{S} \not= S \subseteq G$ then $[S]$ will denote the subgroup of G generated by S, except that, if $S = \langle g \rangle$, $[S]$ will also be denoted by $\langle g \rangle$. The symbols \mathcal{P}, \prod are used respectively for the restricted and unrestricted direct products. Thus if $(G_\lambda)_{\lambda \in \Lambda}$ is a family of discrete abelian groups then $\mathcal{P}_{\lambda \in \Lambda} G_\lambda$ is discrete, $\prod_{\lambda \in \Lambda} G_\lambda^*$ is compact, and each is the character group of the other for their natural pairing (see [4, §37]).

Theorem. Let $S = \langle g_\lambda \rangle_{\lambda \in \Lambda}$ be a nonempty family of elements of G, let $K_\lambda = \{ \chi(g_\lambda) \mid \chi \in H \}$ and let $\phi_S : H \to \prod_{\lambda \in \Lambda} K_\lambda$ be the homomorphism $\chi \mapsto (\chi(g_\lambda))_{\lambda \in \Lambda} = \phi_S(\chi)$.

Then the following statements are equivalent:

(i) $[S] = \mathcal{P}_{\lambda \in \Lambda} \langle g_\lambda \rangle$;

(ii) $\phi_S(H) = \prod_{\lambda \in \Lambda} K_\lambda$;

352
(iii) the functions $\chi \rightarrow \chi(g_\lambda), \lambda \in \Lambda$, constitute an independent family of random variables for the probability field (H, \mathcal{B}, μ).

We prove the implications (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (i).

If (i) is true then $H/[S]^\perp = [S]^* = \prod_{\lambda \in \Lambda} [g_\lambda]^*$, where $[S]^\perp = \{\chi \in H | \chi(g) = 1 \text{ for all } g \in [S]\}$. For each $\chi \in H$ we can therefore find a unique family $(\chi_\lambda)_{\lambda \in \Lambda}$ with $\chi_\lambda \in [g_\lambda]^*$, $\lambda \in \Lambda$, such that $\chi(s) = \prod_{\lambda \in \Lambda} \chi_\lambda(s_\lambda)$ for all $s = \prod_{\lambda \in \Lambda} s_\lambda \in [S]$, where $s_\lambda \in [g_\lambda]$ for $\lambda \in \Lambda$. Condition (ii) follows at once.

Suppose next that (ii) is true. The group $K = \prod_{\lambda \in \Lambda} K_\lambda$ is compact and therefore carries a Haar measure ν for which $\nu(K) = 1$. The map $\phi_S : H \rightarrow K$ is an epimorphism and therefore $\mu(\phi_S^{-1}(A)) = \nu(A)$ for each Borel set $A \subseteq K$. Now let $\Lambda_0 = (\lambda_1, \lambda_2, \cdots, \lambda_n) \subseteq \Lambda$, where $1 \leq n < \infty$, and let A_r be a Borel subset of $K_{\lambda_r}, 1 \leq r \leq n$, and for each $\lambda \in \Lambda$ let ν_λ be the Haar measure on K_λ, normalized so that $\nu_\lambda(K_\lambda) = 1$. Suppose also that $B_\lambda = A_r$ for $\lambda = \lambda_r, 1 \leq r \leq n$, and that $B_\lambda = K_\lambda$ for $\lambda \notin \Lambda_0$. Then, if $E_r = \{\chi \in H | \chi(g_\lambda) \subseteq A_r\}$ and $E = \bigcap_{r=1}^n E_r$, we have, since ν is the product measure on K obtained from $(\nu_\lambda)_{\lambda \in \Lambda}$,

$$\mu(E) = \mu\left(\phi_S^{-1}\left(\prod_{\lambda \in \Lambda} B_\lambda\right)\right) = \prod_{\lambda \in \Lambda} \nu_\lambda(B_\lambda) = \prod_{r=1}^n \nu_{\lambda_r}(A_r) = \prod_{r=1}^n \mu(E_r),$$

so that (iii) is true.

Suppose finally that (i) is false. Then we can find $\Lambda_0 = (\lambda_1, \lambda_2, \cdots, \lambda_n) \subseteq \Lambda$, with $1 \leq n < \infty$, and integers k_r, for $1 \leq r \leq n$, such that $\prod_{r=1}^n g_{\lambda_r}^{k_r} = 1$, with $g_{\lambda_r}^{k_r} \neq 1$ for $r = 1, 2, \cdots, n$. This means that the character $f(\neq 1)$ of K defined by $f(\omega) = \prod_{r=1}^n \omega_{\lambda_r}^{k_r}, \omega = (\omega_\lambda)_{\lambda \in \Lambda} \subseteq K$, is identically 1 on $\phi_S(H)$. But we can find $\omega \in K$ such that $f(\omega) \neq 1$, and then, by continuity of f, open sets $A_r \subseteq K_{\lambda_r}, 1 \leq r \leq n$, such that $f(\omega') \neq 1$ when $\omega' \in \prod_{\lambda \in \Lambda} B_\lambda$, the B_λ being defined as before. Evidently $\phi_S^{-1}(\prod_{\lambda \in \Lambda} B_\lambda) = \emptyset$ and hence (again with the same notation) $E = \emptyset, \mu(E) = 0$. On the other hand

$$\prod_{r=1}^n \mu(E_r) = \prod_{r=1}^n \nu_{\lambda_r}(A_r) \neq 0,$$

and thus (iii) is false. Therefore statement (iii) implies (i), and the proof is complete.

I am indebted to Professor S. Kakutani for drawing my attention to Pontrjagin's proof of Kronecker's theorem. The foregoing proof
that statement (i) implies (ii) is essentially a rearrangement of part of Pontrjagin's argument (for which see [4, §37]).

References

The Queen's College, Oxford