Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Small isotopies in euclidean spaces and 3-manifolds


Author: James Kister
Journal: Bull. Amer. Math. Soc. 65 (1959), 371-373
DOI: https://doi.org/10.1090/S0002-9904-1959-10380-3
MathSciNet review: 0107232
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. J. W. Alexander, On the deformation of an n-cell, Proc. Nat. Acad. Sci. vol. 9 (1923) pp. 406-407.
  • 2. E. Dyer and M. E. Hamstrom, Regular mappings and the space of homeomorphisms on a 2-manifold, Duke Math. J. vol. 25 (1958) pp. 521-531. MR 96202
  • 3. M. K. Fort, A proof that the group of all homeomorphisms of the plane onto itself is locally-arcwise connected, Proc. Amer. Math. Soc. vol. 1 (1950) pp. 59-62. MR 33017
  • 4. Hellmuth Kneser, Die Deformationssätze der einfach zusammenhängenden Flächen, Math. Z. 25 (1926), no. 1, 362–372 (German). MR 1544816, https://doi.org/10.1007/BF01283844
  • 5. J. H. Roberts, Local arcwise connectivity in the space H, Summary of Lectures, Summer Institute on Set Theoretic Topology, Madison, Wisconsin, 1955, p. 100.
  • 6. D. E. Sanderson, Isotopy in 3-manifolds. II. Fitting homeomorphisms by isotopy, Duke Math. J. vol. 26 (1959) pp. 387-396. MR 107231
  • 7. D. E. Sanderson, Isotopy in 3-manifolds. III. Connectivity of spaces of homeomorphisms, to appear in Proc. Amer. Math. Soc. MR 112128


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1959-10380-3

American Mathematical Society