THE DIFFERENTIABILITY OF TRANSITION FUNCTIONS

BY DONALD ORNSTEIN

Communicated by J. L. Doob, October 6, 1959

In this paper we prove that the transition functions of a denumerable Markoff chain are differentiable or equivalently: Given a matrix of real valued functions \(P_{ij}(t) \) \((i, j=1, 2, \ldots) 0 \leq t < \infty\) satisfying

1. \(P_{ij}(t) \) is non-negative and continuous,
2. \(P_{ij}(0) = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j, \end{cases} \)
3. \(P_{ij}(t_1 + t_2) = \sum_{k=1}^{\infty} P_{ik}(t_1)P_{kj}(t_2), \)
4. \(\sum_{j=1}^{\infty} P_{ij}(t) = 1. \)

Our theorem is that \(P_{ij}(t) \) has a finite continuous derivative for all \(t > 0. \)

This result was conjectured by Kolmogoroff in [4].

Doob showed [3] that \(P_{ij}(t) \) has a right hand derivative (possibly infinite) at \(t = 0 \) and Kolmogoroff showed [4] that this derivative is finite if \(i \neq j, \) (if \(i = j \) there are examples where it is infinite). Austin [1; 2] showed that that \(P_{ij}(t) \) has a finite continuous derivative for \(t > 0 \) if either \(P_{ii}(t) \) or \(P_{jj}(t) \) has a finite derivative at 0.

We will now give the proof of our theorem. We will think of the matrices \(\{P_{ij}(t)\} \) as transformations on sequences in such a way that \(\{P_{ij}(t)\} \) transforms the sequence with 1 in the \(m \)th place and 0 elsewhere into the sequence whose \(k \)th term is \(P_{mk}(t). \) We will use letters like \(v \) to denote a sequence, \(T \) to denote a particular matrix and \(T(v) \) to denote the sequence \(v \) transformed by the matrix \(T. \)

Our first step will be to show that \(P_{11}(t) \) has bounded variation in some interval (say from 0 to \(t_0 \)). To do this we will estimate \(\sum_{t_0}^{N-1} \left| P_{11}(it_0/N) - P_{11}((i+1)t_0/N) \right| \) for a fixed integer \(N. \) The estimate will turn out to be independent of \(N. \) To simplify notation we will let \(T = \{P_{ij}(t_0/N)\} \) and let \(f_i = P_{11}(it_0/N). \)

We will first define a sequence of vectors (or sequences) \(v_i. \) \(v_0 \) will be the sequence with 1 in the first place and 0 elsewhere. Let us de-

1 This research was supported in part by the United States Air Force under contract AF49(638)-265, monitored by the Office of Scientific Research.
2 This condition has been eliminated by Professor Jurkat.
3 I wish to thank Professor Chung for valuable aid and encouragement in the preparation of this paper.
THE DIFFERENTIABILITY OF TRANSITION FUNCTIONS

denote by \(v^* \) the sequence whose first term is 0 and which agrees with \(v \) everywhere else. Define \(v_{i+1} = (T(v_i))^* \). We then have

\[
T^*(v_0) = \sum_{i=0}^{\infty} f_{i} v_{i+1}.
\]

This is easily verified by induction (note that the first coordinate of \(T^*(v_0) = f_* \) by definition). We will define a sequence of positive real numbers \(\beta_i, \beta_0 = 1 - f_* \) and \(\beta_i (i \geq 1) \) is the first coordinate of \(T(v_i) \). The following formula is also easy to check.

\[
f_{i+1} - f_* = -f_* \beta_1 + \sum_{i=1}^{\infty} f_{i-1} \beta_i.
\]

(We must interpret \(\sum_{i=1}^{0} \) as 0). Rewriting (2) we get

\[
f_{i+1} - f_* = f_* \sum_{i=1}^{\infty} \beta_i - f_* \beta_0 + \sum_{i=1}^{\infty} (f_{i-1} - f_*) \beta_i.
\]

To see (4) note that

\[
\sum_{i=0}^{N-1} \sum_{i=1}^{\infty} \beta_i |f_{i-1} - f_*| \beta_i = \sum_{j=1}^{N-1} \sum_{k=j}^{N-1} \beta_j |f_k - f_*| \beta_j
\]

and

\[
\sum_{i=0}^{N-1} \sum_{i=1}^{\infty} \beta_i |f_{i-1} - f_*| \beta_i \leq \sum_{i=0}^{N-1} \sum_{i=1}^{\infty} \beta_i |f_{i-1} - f_*| \beta_i.
\]

From (3) and (4) we get

\[
\sum_{i=0}^{N-1} |f_* - f_{i+1}| \leq \left(\sum_{i=0}^{N-1} |f_* - f_{i+1}| \right) \left(\sum_{i=1}^{N-1} i \beta_i \right)
\]

\[
+ \sum_{i=0}^{N-1} |f_* \sum_{i=1}^{\infty} \beta_i - f_* \beta_0|.
\]

If we now assume that the \(\ell_0 \) we used in defining \(T \) has the property that \(P_{11}(t) > 3/4 \) for all \(t < \ell_0 \) we will be able to show that both

\[
\sum_{i=0}^{N-1} i \beta_i \text{ and } \sum_{i=0}^{N-1} \beta_i |f_* \sum_{i=1}^{\infty} \beta_i - f_* \beta_0| \text{ are } < 1/2.
\]

This and (5) will then immediately imply that \(\sum_{i=0}^{N-1} |f_* - f_{i+1}| < 1 \) and, since \(P_{11}(t) \) is
continuous and our estimate does not depend on \(N \), that the variation of \(P_{11}(t) \) \((t < t_0)\) is \(\leq 1 \). To get \(\sum_{i=1}^{N-1} \beta_i < 1/2 \) we note first that \(\sum_{i=1}^{N-1} \beta_i < \sum_{i=1}^{N} |v_i| (|v| = \text{sum of the absolute values of the coordinates of } v) \) since \(\beta_i = |v_i| - |v_{i+1}| \). Next we show that \(\sum_{i=1}^{N} |v_i| < 1/2 \). \(TN(v_0) = f_{N+1}v_0 + \sum_{N}^{N-N} f_Nv_0 \) and since row sums equals 1, \(\sum_{i=1}^{N} f_Nv_i = 1 - f_N < 1/4 \). Each of the \(f_N > 1/2 \) so \(\sum_{i=1}^{N} |v_i| < 1/2 \). \(\sum_{i=1}^{N} |f_{i} \sum_{i=1}^{N} \beta_i - f_{i} \beta_0| < 1/2 \) because \(|\beta_0 - \sum_{i=1}^{N} \beta_i| = |v_{i+1}| \).

We now know that \(P_{11}(t) \) has variation \(< 1 \) in a certain interval about 0. The following argument shows that the variation of \(P_{ij}(t) \leq 4 \) in the same interval.

\[
T^{*+1}(v_0) - T^*(v_0) = \sum_{i=0}^{N-1} (f_{i+1} - f_i)v_i, \quad (f_* = 0)
\]

\[
\sum_{i=0}^{N-1} \left| T^{*+1}(v_0) - T^*(v_0) \right| \leq \sum_{i=0}^{N-1} \sum_{i=1}^{N-1} \left| (f_{i+1} - f_i)v_i \right|
\]

\[
\leq \sum_{i=0}^{N-1} 2N \cdot 1 \cdot 4 \cdot 1 = 4.
\]

The remainder of the proof follows a suggestion of K. L. Chung. Functions of bounded variation have a finite derivative almost everywhere and we can therefore pick a \(t_1 < t_0 \) such that \(P_{1j}(t) \) has a derivative at \(t_1 \) for all \(j \). For an arbitrary \(t_2 \) the existence of a derivative for \(P_{1i}(t_1 + t_2) \) \((i = 1 \cdots \infty)\) follows from the fact that

\[
\frac{P_{1i}(t_1 + t_2) - P_{1i}(t_1 + t_2 + \alpha)}{\alpha} = \sum_{k=1}^{\infty} \frac{P_{1k}(t_1) - P_{1k}(t_1 + \alpha)}{\alpha} P_{ki}(t_2)
\]

and the following lemma: given \(\epsilon \) there exists an integer \(K \) such that

\[
\sum_{j=K}^{\infty} \left| P_{1j}(t_1) - P_{1j}(t_1 + \alpha) \right| \leq \epsilon, \quad \frac{t_1}{4} > \alpha > 0.
\]

We conclude by proving (7). For a given \(\alpha < t_1/4 \) we will pick a \(t_0 \) between \(t_1 \) and \(t_1/2 \) and an integer \(N \) such that \(t_0 \cdot N = \alpha \) and we will define \(T \) and \(v_i \) as before, except that we will use \(t_0 \) instead of \(t_0 \).

It is easy to show that given \(\epsilon_1 \) (we will pick \(\epsilon_1 \) to be \((1/8) \epsilon \cdot t_1/2 \cdot 1/2 \)) there is a \(K_1 \) such that \(\sum_{t=K_1}^{\infty} P_{1j}(t) < \epsilon_1 \) for all \(t < t_1 \). We then have \(\sum_{t=1}^{N} \left| v_i^{K_1} \right| < 2 \epsilon_1 (|v_i^{K_1}| \cdot \text{is the sum of the absolute values of the terms of } v_i \text{ with index } \geq K_1) \). The same argument as the one used in (6) shows

\[\text{The original proof did not make use of the theorem that functions of bounded variation have derivatives almost everywhere and was very much longer. Professor Chung's idea also gives } P_{1j}(t_1 + t_2) = \sum_k P_{1k}(t_1) P_{k1}(t_2). \]
There are at least \((N-1)/2\) integers \(s\) such that
\[
\sum_{j=K_1}^\infty |P_{ij}((s + 1)\alpha) - P_{ij}(s\alpha)| < 8\varepsilon_1 \frac{1}{N}
\]
and for one of these, call it \(r\),
\[
\sum_{j=1}^{K_1} |P_{ij}((r + 1)\alpha) - P_{ij}(r\alpha)| < \frac{8}{N}.
\]
This follows from (6). We now pick \(\varepsilon_2\) (make it \(<\varepsilon\cdot(1/8)K_1\cdot l_{1/2}\cdot 1/2\)). There is a \(K>K_1\) such that
\[
\sum_{j=K}^\infty P_{ij}(t) < \varepsilon_2 \quad \text{for all } i < t_i \text{ and } i \leq K_1,
\]
\[
\sum_{j=K}^\infty |P_{ij}(t_i) - P_{ij}(t_i + \alpha)|
\]
\[
\leq \sum_{m=K}^\infty \sum_{j=1}^\infty |P_{ij}(r\alpha) - P_{ij}(r + 1)\alpha| |P_{jm}(t_i - r\alpha)|
\]
\[
= \sum_{m=K}^\infty \sum_{j=K_1+1}^\infty |P_{ij}(r\alpha) - P_{ij}((r + 1)\alpha)| |P_{jm}(t_i - r\alpha)|
\]

The first term of this last expression is \(<8\varepsilon_1\cdot 1/N\) by (9), \(|P_{ij}(r\alpha) - P_{ij}((r + 1)\alpha)| < 8/N\) by (10) and \(\sum_{m=K}^\infty P_{jm}(t_i - r\alpha) < \varepsilon_2\) for each \(j<K_1\) by (11). Hence the second term is \(<8/N\cdot \varepsilon_2\cdot K_1\).

This finishes the proof of the lemma.

BIBLIOGRAPHY

