THE EQUIVALENCE OF FIBER SPACES AND BUNDLES

BY EDWARD FADELL

Communicated by Hans Samelson, October 8, 1959

1. Introduction. The objective of this paper is to verify the conjecture made in [2] that every Hurewicz fibration [3] over a polyhedral base is fiber homotopy equivalent to a Steenrod fiber bundle [6]. The result relies heavily on Milnor's universal bundle construction [4] and the following extension [2] of a theorem of A. Dold [1].

THEOREM. If \{E_1, p_1, X\} and \{E_2, p_2, X\} are Hurewicz fibrations over a connected CW-complex X and if f: E_1 \rightarrow E_2 is a fiber-preserving map such that f restricted to some fiber is a homotopy equivalence, then f is a fiber homotopy equivalence.

2. The associated bundle. Let \(\pi: E \rightarrow X \) denote a map, where X is a connected, locally finite polyhedron. Furthermore following Milnor's notation in [4], let \(\mathcal{S}, \mathcal{E}, \mathcal{G} \) denote, respectively, the simplicial paths in X, the simplicial paths emanating from a fixed vertex \(v_0 \) and the simplicial loops at \(v_0 \). If \(\alpha = [x_n, \cdots, x_0] \) is a simplicial path in X we will find it convenient to set \(\alpha(0) = x_0, \alpha(1) = x_n \). Now, define

\[\Omega_\alpha = \{(e, \alpha) \in E \times \mathcal{S} \mid \pi(e) = \alpha(0)\} \]

and a map \(\xi: \Omega_\alpha \rightarrow X \) by

\[\xi(e, \alpha) = \alpha(1). \]

Furthermore, let

\[A = \xi^{-1}(v_0) = \{(e, \alpha) \mid \pi(e) = \alpha(0), \alpha(1) = v_0\}. \]

LEMA. \(\{\Omega_\alpha, \xi, X, A, \mathcal{G}\} \) is a Steenrod fiber bundle.

PROOF. Since the proof is entirely analogous to Milnor's proof [4] that \(\mathcal{E} \) is a bundle over X, we content ourselves with a brief outline. The action \(\mu: \mathcal{G} \times A \rightarrow A \) is defined as follows:

\[\mu(g, (e, \alpha)) = (e, g\alpha). \]

Now, let \(v_j \) denote a vertex in X and \(V_j \) the star neighborhood of \(v_j \). The coordinate functions

\[\phi_j: V_j \times A \rightarrow \xi^{-1}(V_j) \]

are defined by

\[\phi_j = \xi^{-1}(\xi(v_j)). \]
THE EQUIVALENCE OF FIBER SPACES AND BUNDLES

\[\phi_j(x, (e, \alpha)) = (e, [x, v_j] e \alpha) \]

where \(e_j \) is a fixed simplicial path from \(v_0 \) to \(v_j \). We leave the remaining details to the reader.

Now, define \(f: E \to \Omega_x \) by

\[f(e) = (e, [\pi(e), \pi(e)]) \]

The following diagram is easily seen commutative:

\[
\begin{array}{ccc}
E & \xrightarrow{f} & \Omega_x \\
\pi \downarrow & \nearrow \xi & \\
X & & \\
\end{array}
\]

3. The equivalence theorem. Let \(\pi: E \to X, f: E \to \Omega_x \) be as in §2.

Theorem. If \(\{E, \pi, X\} \) is a Hurewicz fibration, then \(f \) is a fiber homotopy equivalence.

Proof. Let \(F = \pi^{-1}(v_0) \) denote the fiber in \(E \) over \(v_0 \). Then, in view of the theorem mentioned in the introduction, it suffices to show that \(f' = f| F: F \to A \) is a homotopy equivalence.

Let \(\overline{X} \) denote the space of ordinary paths in \(X \) ending at \(v_0 \) and let \(\eta: \overline{X} \to X \) denote the fiber map given by \(\eta(\alpha) = \alpha(0) \). Furthermore, let \(\overline{E} \) denote the space of simplicial paths \([x_n, \ldots, x_0] \) on \(X \) such that \(x_n = v_0 \). Then, since \(\overline{E} \) is homeomorphic to \(E \) under the correspondence \(\overline{[x_n, \ldots, x_0]} \leftrightarrow [x_n, \ldots, x_0] \), \(\overline{E} \) is a fiber bundle over \(X \) with fiber map \(p: \overline{E} \to X \), given by \(p([x_n, \ldots, x_0]) = x_0 \) and fiber \(\mathcal{G} \).

Consider then the fiber-preserving map \(\overline{h} \)

\[
\begin{array}{ccc}
\overline{X} & \xrightarrow{\overline{h}} & \overline{E} \\
\eta \downarrow & \nearrow \eta & \\
X & & \\
\end{array}
\]

defined as follows: Let \(\lambda \) denote a regular lifting function for \(\{\overline{E}, p, X\} \) and if \(\alpha \in \overline{X} \), set \(\lambda(t) = \alpha(1) - t \), \(0 \leq t \leq 1 \). Finally, define

\[\overline{h}(\alpha) = \lambda([v_0, v_0], \alpha)(1) \]

Now, \(\overline{X} \) and \(\overline{E} \) are contractible, \(\eta^{-1}(v_0) = \Omega(X) \), the space of ordinary loops on \(X \), is dominated by a CW-complex and \(\mathcal{G} \) is a CW-complex. Therefore \(\overline{h} \) restricted to \(\Omega(X) \) is a homotopy equivalence and we may conclude that \(\overline{h} \) is a fiber homotopy equivalence. Thus \(\overline{h} \) possesses a fiber homotopy inverse \(h \). If \(\bar{v}_0 \in \overline{X} \) is the constant path and \([v_0, v_0] \in \mathcal{G} \) is the identity in \(\mathcal{G} \), then \(\overline{h}(\bar{v}_0) = [v_0, v_0] \) and \(h \) may be
chosen so that \(h([v_0, v_0]) = \bar{v}_0 \). We employ \(h \) and \(\bar{h} \) to define an auxiliary map \(\chi: A \to A \) as follows. Define

\[
\chi(e, \alpha) = (e, \bar{h}h(\alpha)).
\]

Since \(\bar{h}h \) is fiber homotopic to the identity map \(E \to E \), \(\chi \sim 1: A \to A \).

Next, we define a homotopy \(H: A \times I \to A \). If \(\omega \) is an ordinary path in \(X \) and \(0 \leq s, t \leq 1 \), set

\[
\omega_s(t) = \omega(st)
\]

and

\[
\omega^*(t) = \omega(s + t - st).
\]

Then, define, for \(0 \leq s \leq 1 \),

\[
H((e, \alpha), s) = \{ \lambda(e, \[h(\alpha)\](s)), \bar{h}(\[h(\alpha)\]^s)(0) \}
\]

where \(\lambda \) is a regular lifting function for \(\{E, \pi, B\} \). Note that \(\pi \lambda(e, [h(\alpha)])(1) = h(\alpha)(s) = \bar{h}(\[h(\alpha)\]^s)(0) \) since \(\bar{h} \) preserves end points and \(\[h(\alpha)\]^s(0) = h(\alpha)(s) \). Also \(\bar{h}(\[h(\alpha)\]^s)(1) = v_0 \) for the same reason. Thus, \(H((e, \alpha), s) \subseteq A \). Furthermore,

\[
H_0(e, \alpha) = (e, \bar{h}h(\alpha)) = \chi(e, \alpha),
\]

\[
H_1(e, \alpha) = \{ \lambda(e, h(\alpha))(1), [v_0, v_0] \}
\]

where \([v_0, v_0] \) is the identity in \(\bar{G} \).

Finally, we define the required homotopy inverse for \(f': F \to A \). Set

\[
g(e, \alpha) = \lambda(e, h(\alpha))(1).
\]

Then, if \(y \in F \),

\[
gf'(y) = g(y, [v_0, v_0]) = \lambda(y, \bar{v}_0)(1) = y
\]

and hence \(gf' = 1 \). Also, if \((e, \alpha) \in A \),

\[
f'g(e, \alpha) = (\lambda(e, h(\alpha))(1), [v_0, v_0]) = H_1(e, \alpha).
\]

Therefore \(f'g \sim \chi \sim 1 \) and \(g \) is a homotopy inverse for \(f' \). This proves the equivalence theorem.

Remark. It is not difficult to check that \(F \) considered as a subset of \(A \) is actually a strong deformation retract of \(A \).

Remark. It is quite clear that our main result is false for Serre fibrations [5] since there exist Serre fibrations over the unit interval whose fibers are not of the same homotopy type. Also, it is possible to exhibit examples of Hurewicz fibrations with 0-connected but not locally contractible base spaces for which our main result is false.
4. Extensions. The Equivalence Theorem is also valid if the base space X is dominated by a locally finite polyhedron. Thus, our main result can be stated as follows.

Theorem. Every Hurewicz fibration over a base space dominated by a locally finite polyhedron is fiber homotopy equivalent to a Steenrod fiber bundle.

An interesting application is the following corollary.

Corollary. If X is a connected space dominated by a locally finite polyhedron, then for every integer $n \geq 1$, there exist n-connective Steenrod fiber bundles over X.

Proof. One merely applies the above theorem to the n-connective Hurewicz fibrations over X given by G. W. Whitehead in [7].

Bibliography