HOMOTOPY-ABELIAN LIE GROUPS

BY S. ARAKI, I. M. JAMES AND EMERY THOMAS

Communicated by Hans Samelson, May 12, 1960

A topological group \(G \) is said to be \textit{homotopy-abelian} if the commutator map of \(G \times G \) into \(G \) is nulhomotopic. Examples can be given\(^2\) of non-compact Lie groups which are homotopy-abelian but not abelian. The purpose of this note is to prove

\textbf{Theorem.} A compact connected Lie group is homotopy-abelian only if it is abelian.

\textbf{Corollary.} If a Lie group is homotopy-abelian, then its maximal compact connected subgroup is abelian.

Our proof depends on the theory of \([\text{?}]\). Thus we consider the Samelson “commutator” product\(^3\) in the homotopy groups of \(G \), which is trivial when \(G \) is homotopy-abelian. The product of \(\alpha \in \pi_p(G) \) with \(\beta \in \pi_q(G) \) is denoted by \(\langle \alpha, \beta \rangle \in \pi_{p+q}(G) \), where \(p, q \geq 1 \). If \(h \) is a homomorphism of \(G \) into another topological group then

\[h_\# \langle \alpha, \beta \rangle = \langle h_\# \alpha, h_\# \beta \rangle, \]

where \(h_\# \) denotes the induced homomorphism. Note that \(h_\# \) is an isomorphism if \(h \) is a covering map and \(p, q \geq 2 \). Hence if two topological groups have a common universal covering group then their higher homotopy groups are related by an isomorphism which is compatible with the Samelson product. Let \(\sigma \pi_q(G) \), where \(q \geq 1 \), denote the subset of \(\pi_{2q}(G) \) consisting of elements \(\langle \beta, \beta \rangle \), where \(\beta \in \pi_q(G) \). We assert the following

\textbf{Lemma.} Let \(G \) be a compact connected simple non-abelian Lie group of dimension \(n \) and rank \(l \). Then \(\sigma \pi_q(G) \neq 0 \), where \(q = 2n/l - 3 \).

The proof is by application of (2.2) of \([\text{6}]\). We distinguish between the classical and exceptional cases, beginning with the latter.

Let \(G \) be one of the exceptional groups. Then \(n/l = p \), an odd prime number, and \(G \) has no \(p \)-torsion (see \([\text{3}]\)). The mod \(p \) cohomology of \(G \) is an exterior algebra on a basis of \(l \) generators. There is one generator \(y \) in dimension \(q \), while the remainder are of lower dimension. It follows from Proposition 6 on page 291 of \([\text{8}]\) that \(y \) has a nontrivial

\(^1\) Research supported in part by U.S. Air Force Contract AF 49(638)-79.
\(^2\) Such as the 2-dimensional affine group (example suggested by H. Samelson).
\(^3\) The theory of the Samelson product is given in \([\text{5}]\), for example.
image under the homomorphism induced by some map of S^q into G. Thus y has nonzero index, in the sense of $[6]$, with regard to some element $\beta \in \pi_q(G)$. By Borel's theorem the mod p cohomology of B, the classifying space of G, is a polynomial algebra on a basis of l generators which correspond under transgression to those of the exterior algebra. The generator x corresponding to y has a nontrivial image under the homomorphism induced by some map of S^{q+1} into B. In the polynomial algebra let M denote the ideal generated by all the basis elements except x. If z is such a generator then

$$\dim z < \dim x = q + 1 = 2(p - 1),$$

and so $\vartheta^s z \in M$, where $\vartheta^s (s \geq 0)$ denotes the Steenrod operator. Hence $\vartheta^p M \subset M$, by the Cartan product formula. This proves that $\vartheta^1 x \notin M$, since by the Adem relation $[1]$ we have

$$\vartheta^{p-2} \vartheta^1 x = (p - 1)\vartheta^{p-1} x = (p - 1)x^p \in M.$$

Hence $\vartheta^1 x = cx^2$, mod M, where $c \neq 0$, and so $\vartheta^1 x$ is significant with regard to β, in the sense of $[6]$. Therefore $\langle \beta, \beta \rangle \neq 0$, by (2.2) of $[6]$, which proves the lemma when G is exceptional.

If G is not exceptional then G is locally-isomorphic to one of the classical groups:

$$SU(l + 1), \quad SO(2l + 1), \quad Sp(l), \quad SO(2l).$$

It is shown in §4 of $[6]$ that each of

$$\sigma\pi_{2l+1}U(l + 1), \quad \sigma\pi_{4l-1}SO(2l + 1), \quad \sigma\pi_{4l-1}Sp(l),$$

contains elements of odd order, and it follows from (18.2) of $[4]$ that the same is true of $\sigma\pi_{4l-5}SO(2l) (l \neq 1)$. Furthermore

$$\pi_r SU(l + 1) \approx \pi_r U(l + 1), \quad (r \geq 2),$$

under the injection, and so $\sigma\pi_{2l+1}SU(l+1) \neq 0$. Since the Samelson product is an invariant of the structure class this completes the proof of the lemma.

To deduce the theorem we recall that a compact connected Lie group G is locally isomorphic to G', say, where G' is the direct product of an abelian group T with various nonabelian simple groups. When any of these latter are present there exists, by the lemma, some value of q such that $\sigma\pi_q(G') \neq 0$ and hence $\sigma\pi_q(G) \neq 0$. Thus $G' = T$ if G is homotopy-abelian, and hence the theorem follows at once. A maximal

4 See (7.2) and (19.1) of $[2]$.
compact connected subgroup of a Lie group is a deformation retract of the component of the identity [7], and so the corollary is an immediate consequence of the theorem.

REFERENCES

5. I. M. James, On H-spaces and their homotopy groups, (to be published in Oxford Quart. J. of Math.).