Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Homotopy-abelian Lie groups


Authors: S. Araki, I. M. James and Emery Thomas
Journal: Bull. Amer. Math. Soc. 66 (1960), 324-326
DOI: https://doi.org/10.1090/S0002-9904-1960-10487-9
MathSciNet review: 0119207
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. J. Adern, Relations on iterated reduced powers, Proc. Nat. Acad. Sci. U.S.A. vol. 39 (1953) pp. 636-638. MR 56293
  • 2. A. Borel, Sur la cohomologie des espaces fibrés..., Ann. of Math. vol. 57 (1953) pp. 115-207. MR 51508
  • 3. A. Borel, Topology of Lie groups and characteristic classes, Bull. Amer. Math. Soc. vol. 61 (1955) pp. 397-432. MR 72426
  • 4. A. Borel and J.-P. Serre, Groupes de Lie et puissances reduites de Steenrod, Amer. J. Math. vol. 75 (1953) pp. 409-448. MR 58213
  • 5. I. M. James, On H-spaces and their homotopy groups, (to be published in Oxford Quart. J. of Math.).
  • 6. I. M. James and E. Thomas, Which Lie groups are homotopy-abelian? Proc. Nat. Acad. Sci. U.S.A. vol. 45 (1959) pp. 737-740. MR 106465
  • 7. H. Samelson, Topology of Lie groups, Bull. Amer. Math. Soc. vol. 58 (1952) pp. 2-37. MR 45129
  • 8. J.-P. Serre, Groupes d'homotopie et classes de groupes abéliens, Ann. of Math, vol. 58 (1953) pp. 258-294. MR 59548


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1960-10487-9

American Mathematical Society