Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Matrices of rational integers


Author: Olga Taussky
Journal: Bull. Amer. Math. Soc. 66 (1960), 327-345
DOI: https://doi.org/10.1090/S0002-9904-1960-10439-9
MathSciNet review: 0120237
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. R. C. Bose, Mathematical theory of the symmetrical factorial design, Sankhyä vol. 8 (1947) pp. 106-166. MR 26781
    1a. R. C. Bose, S. S. Shrikhande and E. T. Parker, Further results on the construction of mutually orthogonal latin squares and the falsity of Euler's conjecture, Canad. J. Math. vol. 12 (1960) pp. 189-203 (contains further references). MR 122729

  • 2. R. H. Bruck and H. J. Ryser, The nonexistence of certain projective planes, Canad. J. Math. vol. 1 (1949) pp. 88-93. MR 27520
  • 3. S. Chowla and H. J.Ryser, Combinatorial problems, Canad. J. Math. vol. 2 (1950) pp. 93-99. MR 32551
  • 4. J. H. Curtiss, editor, Numerical analysis, Proceedings of the Sixth Symposium in Applied Mathematics, New York, 1956.
  • 5. R. E. Gomory, An algorithm for integer solutions to linear programs, Princeton-IBM Math. Research Project, Technical Report 1, 1958.
  • 6. J. Hadamard, Résolution d'une question relative aux déterminants, Bull. Sci. Math. (2) vol. 17 (1893) pp. 240-246.
  • 7. M. Hall, Uniqueness of the projective plane with 57 points, Proc. Amer. Math. Soc. vol. 4 (1953) pp. 912-916. MR 58986
  • 8. M. Hall, Projective planes and related topics, California Institute of Technology, 1954. MR 71036
  • 9. M. Hall, J. D. Swift and R. J. Walker, Uniqueness of the projective plane of order eight, Math. Tables and other Aids to Comp. vol. 10 (1956) pp. 186-194. MR 84142
  • 10. A. J. Hoffman and J. B. Kruskal, Integral boundary points of convex polyhedra, Annals of Mathematics Studies, no. 38, Princeton, 1956, pp. 223-246. MR 85148
  • 11. A. J. Hoffman, M. Newman, E. G. Straus and O. Taussky, On the number of absolute points of a correlation, Pacific J. Math. vol. 6 (1956) pp. 83-96. MR 80072
  • 12. H. W. Kuhn and A. W. Tucker, editors, Annals of Mathematics Studies, no. 38, Princeton, 1956.
  • 13. H. B. Mann, On orthogonal latin squares, Bull. Amer. Math. Soc. vol. 50 (1944) pp. 249-257. MR 10401
  • 14. T. S. Motzkin, The assignment problem, Proceedings of the Sixth Symposium in Applied Mathematics, New York, 1956, pp. 109-125. MR 90480
  • 15. R. E. A. C. Paley, On orthogonal matrices, J. Math. Phys. vol. 12 (1933) pp. 311-320.
  • 16. H. J. Ryser, Matrices with integer elements, Amer. J. Math. vol. 84 (1952) pp. 769-773. MR 50548
  • 17. H. J. Ryser, Geometries and incidence matrices, Amer. Math. Monthly vol. 62 (1955) pp. 25-31. MR 73216
  • 18. H. J. Ryser, Combinatorial properties of matrices of zeros and ones, Canad. J. Math. vol. 9 (1957) pp. 371-377. MR 87622
  • 19. O. Taussky, Some computational problems concerning integral matrices, Proceedings of the Sicily Congress, 1956.
  • 20. C. B. Tompkins, Machine attacks on problems whose variables are permutations, Proceedings of the Sixth Symposium in Applied Mathematics, New York, 1956, pp. 195-211. MR 80380
  • 21. P. Turán, On a problem in the theory of determinants, Acta Math. Sinica vol. 5 (1955) pp. 411-423. MR 73555
  • 1. H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, Berlin, Springer, 1957. MR 88489
  • 2. H. S. M. Coxeter, On subgroups of the unimodular group, J. Math. Pures Appl. (9) vol. 37 (1958) pp. 317-319. MR 98786
  • 3. E. C. Dade, Abelian groups of unimodular matrices, Illinois J. Math. vol. 3 (1959) pp. 11-27. MR 100027
  • 4. J. Dieudonné, La géométrie des groupes classiques, Berlin, Springer, 1955. MR 72144
  • 5. K. Goldberg, Unimodular matrices of order 2 that commute, J. Washington Acad. Sci. vol. 46 (1956) pp. 337-338. MR 86093
  • 6. K. Goldberg and M. Newman, Pairs of matrices of order two which generate free groups, Illinois J. Math. vol. 1 (1957) pp. 446-448. MR 89207
  • 7. L. K. Hua and I. Reiner, On the generators of the symplectic modular group, Trans. Amer. Math. Soc. vol. 65 (1949) pp. 415-426. MR 29942
  • 8. L. K. Hua and I. Reiner, Automorphisms of the unimodular group, Trans. Amer. Math. Soc. vol.71 (1951) pp. 331-348. MR 43847
  • 9. L. K. Hua and I. Reiner, Automorphisms of the projective unimodular group, Trans. Amer. Math. Soc. vol. 72 (1952) pp. 467-473. MR 49194
  • 10. A. Hurwitz, Die unimodularen Substitutionen in einem algebraischen Zahlenkörper, Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. IIa., 1895, pp. 332-356.
  • 11. A. Karass and D. Solitar, On free products, Proc. Amer. Math. Soc. vol. 9 (1958) pp. 217-221. MR 95875
  • 12. J. Landin and I. Reiner, Automorphisms of the general linear group over a principal ideal domain, Ann. of Math. vol. 65 (1957) pp. 519-526. MR 87666
  • 13. J. Landin and I. Reiner, Automorphisms of the two-dimensional general linear group over a Euclidean ring, Proc. Amer. Math. Soc. vol. 9 (1958) pp. 209-216. MR 103232
  • 14. J. Landin and I. Reiner, Automorphisms of the Gaussian unimodular group, Trans. Amer. Math. Soc. vol. 87 (1958) pp. 76-89. MR 103231
  • 15. M. Newman, Structure theorems for modular subgroups, Duke Math. J. vol. 22 (1955) pp. 25-32. MR 67936
  • 16. M. Newman, An alternative proof of a theorem on unimodular groups, Proc. Amer. Math. Soc. vol. 6 (1955) pp. 998-1000. MR 78990
  • 17. M. Newman, The normalizer of certain modular subgroups, Canad. J. Math. vol. 8 (1956) pp. 29-31. MR 78989
  • 18. M. Newman, An inclusion theorem for modular groups, Proc. Amer. Math. Soc. vol. 8 (1957) pp. 125-127. MR 85295
  • 19. Jakob Nielsen, Die Isomorphismengruppe der freien Gruppen, Math. Ann. 91 (1924), no. 3-4, 169–209 (German). MR 1512188, https://doi.org/10.1007/BF01556078
  • 20. H. Rademacher, Zur Theorie der Dedekindschen Summen, Math. Z. vol. 63 (1955) pp. 445-463. MR 79615
  • 21. I. Reiner, Symplectic modular complements, Trans. Amer. Math. Soc. vol. 77 (1954) pp. 498-505. MR 67076
  • 22. I. Reiner, Maximal sets of involutions, Trans. Amer. Math. Soc. vol. 79 (1955) p. 459-476. MR 70622
  • 23. I. Reiner, Automorphisms of the symplectic modular group, Trans. Amer. Math. Soc. vol. 80 (1955) pp. 35-50. MR 73603
  • 24. I. Reiner, Real linear characters of the symplectic modular group, Proc. Amer. Math. Soc. vol. 6 (1955) pp. 987-990. MR 75212
  • 25. I. Reiner, A new type of automorphism of the general linear group over a ring, Ann. of Math. vol. 66 (1957) pp. 461-466. MR 95882
  • 26. I. Reiner, Normal subgroups of the unimodular group, Illinois J. Math. vol. 2 (1958) pp. 142-144. MR 95881
  • 27. I. Reiner and J. D. Swift, Congruence subgroups of matrix groups, Pacific J. Math. vol. 6 (1956) pp. 529-540. MR 82529
  • 28. C. L. Siegel, Discontinuous groups, Ann. of Math. vol. 44 (1943) pp. 674-689. MR 9959
  • 29. O. Taussky and J. Todd, Commuting bilinear transformations and matrices, J. Washington Acad. Sci. vol. 46 (1956) pp. 373-375. MR 86094
  • 30. O. Taussky, Research problem 10, Bull. Amer. Math. Soc. vol. 64 (1958) pp. 124.
  • 1. H. Davenport, Minkowski's inequality for the minimum associated with a convex body, Quart. J. Math. Oxford Ser. vol. 10 (1939) pp. 119-121.
    1a. M. Kneser, Klassenzahlen definiter quadratischer Formen, Arch. Math. vol. 8 (1958) pp. 241-250. MR 90606

  • 2. H. Davenport, Klassenzahlen quadratischer Formen, Jber. Deutsch. Math. Verein. vol. 61 (1958) pp. 76-88. MR 105392
  • 3. Chao Ko, Determination of the class number of positive quadratic forms in nine variables with determinant unity, J. London Math. Soc. vol. 13 (1938) pp. 102-110.
  • 4. Chao Ko, On the positive definite quadratic forms with determinant unity, Acta Arith. vol. 3 (1939) pp. 79-85.
  • 5. W. Ledermann, An arithmetical property of quadratic forms, Comment. Math. Helv. vol. 33 (1959) pp. 34-37. MR 100569
    5a. K. Mahler, On Minkowski's theory of reduction of positive quadratic forms, Quart. J. Math. Oxford Ser. vol. 9 (1938) pp. 259-262.

  • 6. H. Minkowski, Zur Theorie der positiven quadratischen Formen, Ges. Abh., 1, Leipzig, Teubner, 1911, pp. 212-218.
    6a. H. Minkowski, Diskontinuitätsbereich für arithmetische Äquivalenz, Ges. Abh., 2, Leipzig, Teubner, 1911, pp. 53-100.

  • 7. L. J. Mordeil, The definite quadratic forms in eight variables with determinant unity, J. Math. Pures Appl. vol. 17 (1938) pp. 41-46.
  • 8. M. Newman and O. Taussky, Classes of positive definite unimodular circulants, Canad. J. Math. vol. 9 (1956) pp. 71-73. MR 82947
  • 9. R. E. O'Connor and G. Pall, The construction of integral quadratic forms of determinant 1, Duke Math. J. vol. 11 (1944) pp. 319-331. MR 10153
  • 10. G. Pall, The arithmetical invariants of quadratic forms, Bull. Amer. Math. Soc. vol. 51 (1945) pp. 185-197. MR 12641
  • 11. G. Pall, Representation by quadratic forms, Canad. J. Math. vol. 1 (1949) pp.344-364. MR 34795
  • 12. Robert Remak, Über die Minkowskische Reduktion der definiten quadratischen Formen, Compositio Math. 5 (1938), 368–391 (German). MR 1557006
  • 13. Carl Ludwig Siegel, Über die analytische Theorie der quadratischen Formen, Ann. of Math. (2) 36 (1935), no. 3, 527–606 (German). MR 1503238, https://doi.org/10.2307/1968644
  • 14. Carl Ludwig Siegel, Über die analytische Theorie der quadratischen Formen. II, Ann. of Math. (2) 37 (1936), no. 1, 230–263 (German). MR 1503276, https://doi.org/10.2307/1968694
  • 15. Carl Ludwig Siegel, Über die analytische Theorie der quadratischen Formen. III, Ann. of Math. (2) 38 (1937), no. 1, 212–291 (German). MR 1503335, https://doi.org/10.2307/1968520
  • 16. C. L. Siegel, Einheiten quadratischer Formen, Abh. Math. Sem. Univ. Hamburg vol. 13 (1939) pp. 209-239. MR 3003
  • 17. B. L. van der Waerden, Die Reduktionstheorie der positiven quadratischen Formen, Acta Math. vol. 96 (1956) pp. 265-309. MR 82513
  • 18. H. Weyl, Theory of reduction for arithmetical equivalence, Trans. Amer. Math. Soc. vol. 48 (1940) pp. 126-164. MR 2345
  • 19. H. Wey, Theory of reduction for arithmetical equivalence, II, Proc. London Math. Soc. vol. 47 (1942) pp. 268-289.
  • 1. J. J. Burckhardt, Die Bewegungsgruppen der Kristallographie, Basel, Birkhäuser, 1947. MR 20553
  • 2. H. Zassenhaus, Über einen Algorithmus zur Bestimmung der Raumgruppen, Comment. Math. Helv. vol. 21 (1948) pp. 117-141. MR 24424
  • 1. E. Cahen, Theorie des nombres I, Paris, Hermann, 1914.
  • 2. A. Châtelet, Groupes abéliens finis, Paris, Gauthier-Villars, 1925.
  • 3. L. G. du Pasquier, Zahlentheorie der Tettarionen, Vierteljschr. Naturf. Ges. Zürich vol. 51 (1906) pp. 55-129.
  • 4. C. Hermite, Sur l'introduction des variables continues dans la théorie des nombres, J. Reine Angew. Math. vol. 41 (1851) pp. 191-216.
  • 5. C. C. MacDuffee, Theory of matrices, Berlin, Springer, 1933.
  • 6. C. C. MacDuffee, Matrices with elements in a principal ideal ring, Bull. Amer. Math. Soc. ol. 39 (1933) pp. 564-584.
  • 7. G. Pall, Representation by quadratic forms, Canad. J. Math. vol. 1 (1949) pp. 344-364. MR 34795
  • 8. I. Reiner, Unimodular complements, Amer. Math. Monthly vol. 43 (1956) pp. 246-247. MR 76747
  • 9. H. J. S. Smith, On systems of linear indeterminate equations and congruences, Philos. Trans. Roy. Soc. London vol. 151 (1861) pp. 293-326.
  • 10. Oswald Veblen and Philip Franklin, On matrices whose elements are integers, Ann. of Math. (2) 23 (1921), no. 1, 1–15. MR 1502588, https://doi.org/10.2307/1967777
  • 1. E. Artin, Zur Arithmetik hyperkomplexer Zahlen, Abh. Math. Sem. Univ. Hamburg vol. 5 (1928) pp. 261-289.
  • 2. H. Brandt, Idealtheorie in Quaternionenalgebren, Math. Ann. 99 (1928), no. 1, 1–29 (German). MR 1512436, https://doi.org/10.1007/BF01459083
  • 3. H. Brandt, Idealtheorie in einer Dedekindschen Algebra, Jber. Deutsch. Math. Verein. vol. 37 (1928) pp. 5-7.
  • 4. C. Chevalley, L'arithmétique dans les algèbres de matrices, Actualités Sci. Ind. no. 323 (1936).
  • 5. H. S. M. Coxeter, Integral Cayley numbers, Duke Math. J. vol. 13 (1946) pp. 561-578. MR 19111
  • 6. M. Deuring, Algebren, Berlin, Springer, 1935. MR 228526
  • 7. L. E. Dickson, Arithmetic of quaternions, Proc. London Math. Soc. vol. 20 (1922) pp. 225-232.
  • 8. L. E. Dickson, A new simple theory of hypercomplex integers, Bull. Amer. Math. Soc. vol. 29 (1923) p. 121.
  • 9. L. E. Dickson, Algebras and their arithmetics, Chicago, University Press, 1923.
  • 10. L. E. Dickson, Algebren und ihre Zahlentheorie, Zürich, Orell Füsseli, 1927.
  • 11. M. Eichler, Bestimmung der Idealklassenzahl in gewissen normalen einfachen Algebren, J. Reine Angew. Math. vol. 176 (1937) pp. 192-202.
  • 12. Helmut Hasse, Über ℘-adische Schiefkörper und ihre Bedeutung für die Arithmetik hyperkomplexer Zahlsysteme, Math. Ann. 104 (1931), no. 1, 495–534 (German). MR 1512683, https://doi.org/10.1007/BF01457954
  • 13. K. Hey, Analytische Zahlentheorie in Systemen hyperkomplexer Zahlen, Dissertation, University of Hamburg, 1929.
  • 14. A. Hurwitz, Über die Zahlentheorie der Quaternionen, Ges. Abh. II, Basel, Birkhäuser, 1933, pp. 303-330.
  • 15. Claiborne G. Latimer, On ideals in generalized quaternion algebras and Hermitian forms, Trans. Amer. Math. Soc. 38 (1935), no. 3, 436–446. MR 1501819, https://doi.org/10.1090/S0002-9947-1935-1501819-0
  • 16. R. Lipschitz, Recherches sur les transformations, par des substitutions réelles, d'une somme de deux ou de trois carrés en elle-même, J. Math. Pures Appl. vol. 4 (1886) pp. 373-439.
  • 17. K. Mahler, On ideals in the Cayley-Dickson algebra, Proc. Roy. Irish Acad. vol. 48 (1943) pp. 123-133. MR 7745
  • 18. G. Pall, On the arithmetic of quaternions, Trans. Amer. Math. Soc. vol. 47 (1940) pp. 487-500. MR 2350
  • 19. G. Pall, On generalized quaternions, Trans. Amer. Math. Soc. vol. 59 (1946) pp. 280-332. MR 18702
  • 20. G. Pall and O. Taussky, Application of quaternions to the representations of a binary quadratic form as a sum of four squares, Proc. Roy. Irish Acad. vol. 58 (1957) pp. 23-28. MR 92809
  • 21. R. A. Rankin, A certain class of multiplicative functions, Duke Math. J. vol. 13 (1946) pp. 281-306. MR 18683
  • 22. Otto Schilling, Über gewisse Beziehungen zwischen der Arithmetik hyperkomplexer Zahlsysteme und algebraischer Zahlkörper, Math. Ann. 111 (1935), no. 1, 372–398 (German). MR 1513002, https://doi.org/10.1007/BF01472227
  • 23. A. Speiser, Allgemeine Zahlentheorie, Vierteljschr. Naturf. Ges. Zürich, vol. 71 (1926) pp. 8-41.
  • 24. A. Speiser, Idealtheorie in rationalen Algebren, "Algebras and their arithmetics," Chicago, University Press, 1923, Chapter 13.
  • 1. A. Chatelet, Sur certains ensembles de tableaux et leur application à la théorie des nombres, Ann. Sci. École Norm. Sup. (3) 28 (1911), 105–202 (French). MR 1509137
  • 2. M. Deuring, Algebren, Berlin, Springer, 1935. MR 228526
  • 3. C. C. MacDuffee, A method for determining the canonical basis of an ideal in an algebraic field, Math. Ann. 105 (1931), no. 1, 663–665. MR 1512733, https://doi.org/10.1007/BF01455837
  • 4. C. C. MacDuffee, Modules and ideals in a Frobenius algebra, Monatsh. Math. vol. 48 (1939) pp. 293-313. MR 599
  • 5. C. C. MacDuffee, An introduction to the theory of ideals in linear associative algebras, Trans. Amer. Math. Soc. 31 (1929), no. 1, 71–90. MR 1501469, https://doi.org/10.1090/S0002-9947-1929-1501469-3
  • 6. H. Poincaré, Sur un mode nouveau de représentation géometrique des formes quadratiques définies ou indéfinies, Journal de l'École Polytechnique vol. 47 (1880) pp. 177-245.
  • 7. G. Shover and C. C. MacDuffee, Ideal multiplication in a linear algebra, Bull. Amer. Math. Soc. vol. 37 (1931) pp. 434-438.
  • 8. G. Shover, Class numbers in a linear associative algebra, Bull. Amer. Math. Soc. vol. 39 (1933) pp. 610-614.
  • 1. A. A. Albert, Rational normal matrices satisfying the incidence relation, Proc. Amer. Math. Soc. vol. 4 (1953) pp. 554-559. MR 56570
  • 2. R. P. Bambah and S. Chowla, On integer roots of the unit matrix, Proc. Nat. Inst. Sci. India vol. 13 (1937) pp. 241-246. MR 23263
  • 3. D. K. Faddeev, On the characteristic equations of rational symmetric matrices, Dokl. Akad. Nauk SSSR (N.S.) vol. 58 (1947) pp. 753-754. MR 22860
  • 4. D. S. Gorshkov, Kubische Körper und symmetrische Matrizen, C. R. (Doklady) Acad. Sci. SSSR vol. 31 (1941) pp. 842-844. MR 5092
  • 5. F. Krakowski, Eigenwerte und Minimalpolynome symmetrischer Matrizen in kommutativen Körpern, Comment. Math. Helv. vol. 32 (1958) pp. 224-240. MR 99346
  • 6. Claiborne G. Latimer and C. C. MacDuffee, A correspondence between classes of ideals and classes of matrices, Ann. of Math. (2) 34 (1933), no. 2, 313–316. MR 1503108, https://doi.org/10.2307/1968204
  • 7. H. Rademacher, Zur Theorie der Dedekindschen Summen, Math. Z. vol. 63 (1955) pp. 445-463. MR 79615
  • 8. I. Reiner, Integral representations of cyclic groups of prime order, Proc. Amer. Math. Soc. vol. 8 (1957) pp. 142-146. MR 83493
  • 9. Ernst Steinitz, Rechteckige Systeme und Moduln in algebraischen Zahlköppern. I, Math. Ann. 71 (1911), no. 3, 328–354 (German). MR 1511661, https://doi.org/10.1007/BF01456849
  • 10. Ernst Steinitz, Rechteckige Systeme und Moduln in algebraischen Zahlkörpern. II, Math. Ann. 72 (1912), no. 3, 297–345 (German). MR 1511701, https://doi.org/10.1007/BF01456721
  • 11. O. Taussky, On a theorem of Latimer and MacDuffee, Canad. J. Math. vol. 1 (1949) pp. 300-302. MR 30491
  • 12. O. Taussky, Classes of matrices and quadratic fields, Pacific J. Math. vol. 1 (1951) p. 127-131. MR 43064
  • 13. O. Taussky, Classes of matrices and quadratic fields II, J. London Math. Soc. vol.27 (1952) pp. 237-239. MR 46335
  • 14. O. Taussky, On matrix classes corresponding to an ideal and its inverse, Illinois J. Math. vol. 1 (1957) pp. 108-113. MR 94326
  • 15. O. Taussky and J. Todd, Matrices with finite period, Proc. Edinburgh Math. Soc. vol. 6 (1939) pp. 128-134. (This contains a list of earlier references.) MR 2829
  • 16. O. Taussky and J. Todd, Matrices of finite period, Proc. Roy. Irish Acad. vol. 46 (1940) pp.113-121. MR 3607
  • 17. H. Zassenhaus, Neuer Beweis der Endlichkeit der Klassenzahl bei unimodularer Äquivalenz ganzzahliger Substitutionsgruppen, Abh. Math. Sem. Univ. Hamburg vol. 12 (1938) pp. 276-288.
  • 1. G. Higman, The units of group rings, Proc. London Math. Soc. vol. 46 (1940) pp. 231-248. MR 2137
  • 2. M. Newman and O. Taussky, On a generalization of the normal basis in abelian algebraic number fields, Comm. Pure Appl. Math. vol. 9 (1956) pp. 85-91. MR 75985
  • 3. M. Newman and O. Taussky, Classes of positive definite unimodular circulants, Canad. J. Math. vol. 9 1956) pp. 71-73. MR 82947
  • 4. O. Taussky, Normal matrices in algebraic number theory, Proceedings of the International Congress of Mathematicians, Amsterdam, 1956.
  • 5. O. Taussky, Unimodular integral circulants, Math. Z. vol. 63 (1955) pp. 286-289. MR 72890
  • 1. W. Burnside, On the arithmetical nature of the coefficients in a group of linear substitutions, Proc. London Math. Soc. (2) 7 (1908) pp. 8-13.
  • 2. F. E. Diederichsen, Über die Ausreduktion ganzzahliger Gruppendarstellungen bei arithmetischer Äquivalenz, Abh. Math. Sem. Univ. Hamburg vol. 14 (1938) pp. 357-412. MR 2133
  • 3. W. Gaschütz, Über den Fundamentalsatz von Maschke zur Darstellungstheorie der endlichen gruppen, Math. Z. vol. 56 (1952) pp. 376-387. MR 51838
  • 4. J. M. Maranda, On the equivalence of representations of finite groups by groups of automorphisms of modules over Dedekind rings, Canad. J. Math. vol. 7 (1955) pp. 516-526. MR 88498
  • 5. J. M. Maranda, On $$$n-adic integral representations of finite groups, Canad. J. Math. vol. 5 (1953) pp. 344-355. MR 56605
  • 6. I. Kaplansky, Modules over Dedekind rings and valuation rings, Trans. Amer. Math. Soc. vol. 72 (1952) pp. 327-340. MR 46349
  • 7. I. Reiner, Maschke modules over Dedekind rings, Canad. J. Math. vol. 8 (1956) pp. 329-334. MR 78969
  • 8. I. Reiner, Integral representations of cyclic groups of prime order, Proc. Amer. Math. Soc. vol. 8 (1957) pp. 142-146. MR 83493
  • 9. I. Schur, Arithmetische Untersuchungen über endliche Gruppen linearer Substitutionen, S.-B. Preuss. Akad. Wiss. Berlin (1906) pp. 164-184.
  • 10. I. Schur, Über Gruppen linearer Substitutionen mit Koeffizienten aus einem algebraischen Zahlkörper, Math. Ann. 71 (1911), no. 3, 355–367 (German). MR 1511662, https://doi.org/10.1007/BF01456850
  • 11. H. Zassenhaus, Neuer Beweis der Endlichkeit der Klassenzahl bei unimodularer Äquivalenz, Abh. Math. Sem. Univ. Hamburg vol. 12 (1938) pp. 276-288.


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1960-10439-9

American Mathematical Society