RESEARCH ANNOUNCEMENTS

The purpose of this department is to provide early announcement of significant new results, with some indications of proof. Although ordinarily a research announcement should be a brief summary of a paper to be published in full elsewhere, papers giving complete proofs of results of exceptional interest are also solicited.

A POLYNOMIAL CANONICAL FORM FOR CERTAIN ANALYTIC FUNCTIONS OF TWO VARIABLES AT A CRITICAL POINT

BY N. LEVINSON

Communicated by Oscar Zariski, June 22, 1960

THEOREM. Let \(F(z, w) \) be analytic for small \(|z| \) and \(|w| \) and \(F(0, 0) = 0 \). Then (Weierstrass Preparation Theorem)

\[
F(z, w) = z^k[w^m + a_1(z)w^{m-1} + \cdots + a_m(z)]\Phi(z, w)
\]

where \(\Phi(0, 0) \neq 0 \) and \(a_j(0) = 0 \). Let the discriminant of the polynomial in \(w \), in the bracket above, not vanish identically (so that there are no quadratic factors of \(F \) which are polynomials in \(w \)). Then there exists \(\psi(\xi, \omega) \) a polynomial in \((\xi, \omega) \) of degree \(m \) in \(\omega \) and analytic functions \(\gamma(z, w) \) and \(\delta(z, w) \) such that \(\gamma(0, 0) = \partial \gamma / \partial z(0, 0) = \partial \gamma / \partial w(0, 0) = 0 \) and similarly for \(\delta \) such that if

\[
\xi = z + \gamma(z, w), \quad \omega = w + \delta(z, w)
\]

then

\[
\psi(\xi, \omega) = F(z, w).
\]

(Note that \(\psi \) is a polynomial in both variables.) An outline of the proof follows.

By [1] it is known that \(F \) can be transformed by use of (2) to the form of (1) with \(\Phi = 1 \). Hence the case

\[
F(z, w) = f_0(z)w^m + f_1(z)w^{m-1} + \cdots + f_m(z)
\]

where \(f_0 = z^k \) and \(z^{k+1} | f_j(z) \) \(j \geq 1 \), can be considered.

Because of the hypothesis on \(F \) it can be shown that the resultant of \(F_z = \partial F / \partial z \) and \(F_w \) does not vanish identically. Thus

1 The preparation of this paper was supported by the Office of Naval Research.
A POLYNOMIAL CANONICAL FORM FOR ANALYTIC FUNCTIONS 367

\(D(z) = \begin{bmatrix}
0 & 0 & \cdots & 0 & f'_0 & 0 & \cdots & 0 & mf_0 \\
0 & 0 & \cdots & f'_0 & f'_1 & 0 & \cdots & mf_0 (m - 1)f_1 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
f'_{m-1} & f'_{m} & \cdots & 0 & 2f_{m-2} & \cdots & 0 & 0 \\
f'_{m} & 0 & \cdots & 0 & f_{m-1} & \cdots & 0 & 0
\end{bmatrix} \neq 0 \)

for small \(|z| > 0\). Let the lowest nonvanishing power of \(z\) in \(D(z)\) be \(z^k\). Let \(P_0(z) = z^k\) and for \(j \geq 1\) let \(P_j(z)\) be polynomials of degree \(2\mu + 2\) such that \(P_j - f_j\) has least power of \(z\) of degree at least \(2\mu + 3\). Let the polynomial

\[\psi(z, \omega) = z^k \omega^m + P_1(z) \omega^{m-1} + \cdots + P_m(z). \]

Consider now the equation

\[\psi(z + g, w + h) = \psi(z, w) + g\psi_z(z, w) + h\psi_w(z, w) + R(z, w, g, h) \]

where each term in the polynomial \(R\) is of degree at least two in \((g, h)\). Hence (8) can be written as

\[(g_0 + wg_1 + \cdots + w^{m-2}g_{m-2})\psi_z(z, w) \]

\[+ (h_0 + \cdots + w^{m-1}h_{m-1})\psi_w(z, w) \]

\[= (f_1 - P_1)w^{m-1} + \cdots + (f_m - P_m) \]

\[- R(z, w, g_0 + \cdots + g_{m-2}w^{m-2}, h_0 + \cdots). \]

Certainly the equation (7) will be satisfied if the coefficients of \(w^i\) on the left are set equal to those of \(w^i\) on the right except that \(-R\) is kept with \(f_m - P_m\) so that the \(2m - 1\) equations obtained from (7) are

\[P'_0(z)g_{m-2} + mP_0(z)h_{m-1} = 0, \cdots, \]

\[P'_m g_0 + P_{m-1}h_0 = f_m - P_m - R. \]

Because of (5) and the coincidence of the early terms of \(P_j\) and \(f_j\), the equations (8) can be inverted to give

\[g_i = z^{-\nu} \sum_{j=1}^{m} \alpha_{ij}(z)(f_j - P_j) - z^{-\nu} \alpha_{im} R, \quad i = 0, \cdots, m - 2 \]

\[h_i = z^{-\nu} \sum_{j=1}^{m} \beta_{ij}(z)(f_j - P_j) - z^{-\nu} \beta_{im} R, \quad i = 0, \cdots, m - 1 \]
where α_{ij} and β_{ij} are analytic in z. Next let $g_i = z^{p_i+1}u_i$ and $h_i = z^{q_i+1}v_i$. If

$$R(z, w, z^{p_0+1}u_0 + \cdots + z^{p_{m-2}+1}w^{m-2}, z^{p_{m-1}+1}v_0 + \cdots + z^{p_{m-1}+1}w^{m-1})$$

then \bar{R} is a polynomial in all variables of degree at least two in (u_i, v_i). Hence (9) and (10) become

$$u_i + z\alpha_{im}(z)\bar{R} = \sum_{i=1}^{m} \alpha_{ij}(z)z^{-2^{i-1}}(f_i - P_i), \quad i = 0, \cdots, m - 2,$$

(11)

$$v_i + z\beta_{im}\bar{R} = \sum_{i=1}^{m} \beta_{ij}(z)z^{-2^{i-1}}(f_i - P_i), \quad i = 0, \cdots, m - 1.$$

Since $(f_i - P_i)z^{-2^{i-1}}$ is analytic and vanishes at $z=0$, and since $u_i = v_i = 0$ is a solution of (11) for $z = w = 0$, it follows from the implicit function theorem that for small $|z|$ and $|w|$, (11) has an analytic solution $u_i(z, w), v_i(z, w)$.

The question of whether it was possible to extend the result of [1] to the form of a polynomial ψ in both variables (rather than in just one as in [1]) was asked of me by Felix Browder.

Reference

Massachusetts Institute of Technology