CONFORMAL TRANSFORMATIONS IN RIEMANNIAN AND HERMITIAN SPACES

BY KENTARO YANO

Communicated by S. Bochner, April 20, 1960

The purpose of the present note is to show that the results recently announced by S. I. Goldberg [1] in this Bulletin are valid also in slightly more general forms.

1. Consider a conformal Killing vector \(v^h \) in an \(n \)-dimensional Riemannian space. Then the Lie derivative of the fundamental tensor \(g_{ij} \) and that of Christoffel symbols with respect to \(v^h \) are respectively given by

\[
\mathcal{L}_v g_{ij} = \nabla_j v_i + \nabla_i v_j = 2\phi g_{ij},
\]

and

\[
\mathcal{L}_v \left\{ v^j \right\}_{j} = \nabla_j v^h + K_{hij} v^k = A^h v_i + A^h v_j - \phi g_{ij},
\]

where \(\nabla_j \) is the symbol of covariant differentiation, \(K_{hij} \) the curvature tensor, \(A^h \) the unit tensor and \(\phi = \nabla_i \phi, \phi^h \) being its contravariant components.

For a skew-symmetric tensor \(w_{i_1 i_2 \ldots i_l} \), we have in general [5]

\[
\mathcal{L}_v \nabla_j w_{i_1 i_2 \ldots i_l} - \nabla_j \mathcal{L}_v w_{i_1 i_2 \ldots i_l} = -\left(\mathcal{L}_v \left\{ \begin{array}{c} j \\ i_l \end{array} \right\} \right) w_{i_1 i_2 \ldots i_{l-1}} - \cdots - \left(\mathcal{L}_v \left\{ \begin{array}{c} j \\ i_1 \end{array} \right\} \right) w_{i_2 i_3 \ldots i_l}.
\]

Taking the skew-symmetric part with respect to \(j, i_1 \ldots i_l \), we find

\[
\mathcal{L}_v \nabla_{[j} w_{i_1 i_2 \ldots i_l]} = \nabla_{[j} \mathcal{L}_v w_{i_1 i_2 \ldots i_l]},
\]

from which

Theorem 1.1. The Lie derivative of a closed skew-symmetric tensor is closed.

Transvecting (1.3) with \(g^{i_1 i_2} \) and taking account of (1.1) and (1.2), we get

\[
\mathcal{L}_v g^{i_1 i_2} \nabla_j w_{i_1 i_2 \ldots i_l} + 2\phi g^{i_1 i_2} \nabla_j w_{i_1 i_2 \ldots i_l} - g^{i_1 i_2} \nabla_j \mathcal{L}_v w_{i_1 i_2 \ldots i_l} \]

\[
= (n - 2p) \phi^i w_{i_1 i_2 \ldots i_l},
\]

369
from which

Theorem 1.2. The Lie derivative of a coclosed skew-symmetric tensor of order p with respect to a conformal Killing vector is coclosed if and only if $p = n/2$, n being even, or $\nabla^i(\phi w_{i_{p-1} \ldots i_1}) = 0$, that is, $\phi w_{i_{p-1} \ldots i_1}$ is also coclosed, where ϕ is the function appearing in $\mathcal{R} g_{ij} = 2\phi g_{ij}$.

Combining Theorems 1.1 and 1.2 we have

Theorem 1.3. The Lie derivative of a harmonic tensor w of order p in an n-dimensional Riemannian space with respect to a conformal Killing vector is also harmonic if and only if $p = n/2$, n being even, or ϕw is coclosed.

The most specific statement resulting is as follows, see [4; 5; 6].

Theorem 1.4. The Lie derivative of a harmonic tensor w of order p in an n-dimensional compact orientable Riemannian space with respect to a conformal Killing vector is zero if and only if $p = n/2$, n being even, or ϕw is coclosed where ϕ is a function appearing in $\mathcal{R} g_{ij} = 2\phi g_{ij}$ [1].

2. In an almost complex space, a contravariant almost analytic vector is defined as a vector ν^h which satisfies

$$\mathcal{L}_v F_i^h = v^t \partial_t F_i^h - F_i^t \partial_t \nu^h + F_i^h \partial_t \nu^t = 0. \tag{2.1}$$

In an almost Hermitian space, (2.1) may be written as

$$\mathcal{L}_v F_i^h = v^t \nabla_t F_i^h - F_i^t \nabla_t \nu^h + F_i^h \nabla_t \nu^t = 0, \tag{2.2}$$

from which, by a straightforward calculation,

$$\nabla^i \nabla_t \nu^h + K_i^h \nu^t - F_i^h (\mathcal{R} F_i^t) - \frac{1}{2} F_{j;h} (\mathcal{R} F_j^t) = 0, \tag{2.3}$$

where K_i^h is the Ricci tensor and

$$F_i^t = \nabla^j F_j^i,$$

$$F_{j;h} = \nabla_j F_{i;h} + \nabla_i F_{j;h} + \nabla_h F_{ji}.$$

If we put

$$S^i_t = g^j_t (\mathcal{R} F_t^i),$$

and suppose that the space is compact, we have
\[\int \left[\left\{ \nabla^i \nabla^h + K^h_{\ i} v^i - F^h_i (\mathcal{Q} s^i) - \frac{1}{2} F^h_{ji} (\mathcal{Q}_s s^i) \right\} v^h + \frac{1}{2} S^{ij} S^i_{\ ji} \right] d\sigma = 0, \]

(2.4)
d\sigma being volume element of the space.

From (2.3) and (2.4) we have

Theorem 2.1. A necessary and sufficient condition for a vector \(v^h \) in a compact almost Hermitian space to be contravariant analytic is (2.3).

Suppose that a conformal Killing vector \(v^h \) satisfies

\[^W + F^h_{ji} (\mathcal{Q} s^i) = 0. \]

Substituting

\[\nabla^i \nabla^h + K^h_{\ i} v^i = - \frac{n-2}{n} \nabla^h (\nabla^h) \]

obtained from (1.2) into (2.4), we find

\[\int \left[\frac{n-2}{n} (\nabla^h)^2 + \frac{1}{2} S^{ij} S^i_{\ ji} \right] d\sigma = 0, \]

(2.5)

from which, for \(n>2 \),

\[\nabla^h v^i = 0, \quad S^i_{\ ji} = 0 \]

and consequently \(v^h \) is a Killing vector \([4;6]\) and at the same time a contravariant almost analytic vector, and for \(n=2 \), we have \(S^i_{\ ji} = 0 \). Thus we have

Theorem 2.2. If a conformal Killing vector \(v^h \) in an \(n \)-dimensional compact almost Hermitian space satisfies

\[F^h_i (\mathcal{Q}_s s^i) + \frac{1}{2} F^h_{ji} (\mathcal{Q}_s s^i) = 0, \]

(2.6)

then, for \(n>2 \), it defines an automorphism of the space, that is, the infinitesimal transformation \(v^h \) does not change both the metric and the almost complex structure of the space, and for \(n=2 \), it is contravariant almost analytic.

An almost Hermitian space in which \(F^h = 0 \) is satisfied is called an almost semi-Kählerian space. In such a space, we have
\[F_{jik} F^{ik} = 2 F_t F^t_h = 0. \]

Thus from Theorem 2.2, we have

Theorem 2.3. If a conformal Killing vector \(v \) in an \(n (>2) \) dimensional compact almost semi-Kählerian space satisfies

(2.7) \[F_{jik}(\nabla_i F^{ij}) = 0 \quad \text{or} \quad (\nabla_i F_{jik}) F^{it} = 0, \]

then \(v \) defines an automorphism in the space.

An almost Hermitian space in which \(F_{jik}=0 \) is satisfied is called an almost Kählerian space. In such a space, we have

\[F_h = -\frac{1}{2} F_{jik} F^{ik} F_h^t = 0, \]

that is, \(F_{jik} \) is harmonic. Thus from Theorem 2.3, we have

Theorem 2.4. A conformal Killing vector \(v \) in an \(n (>2) \) dimensional compact almost Kählerian space defines an automorphism of the space (cf. [1; 2; 3]).

Bibliography

University of Hong Kong