EXTENSION OF CONTINUOUS FUNCTIONS IN βN

BY N. J. FINE1 AND L. GILLMAN2

Communicated by Deane Montgomery, June 4, 1960

1. Introduction. The present considerations arose from the following problem: let $p \subseteq \beta N - N$; is $\beta N - N - \{p\}$ C^*-embedded in $\beta N - N$—i.e., is $\beta(\beta N - N - \{p\})$ equal to $\beta N - N$? We prove, assuming the continuum hypothesis (designated by \([CH]\)), that the answer is negative. More generally, see Theorem 4.6. The corresponding question for βD, where D is any discrete space, is discussed in §5. The proofs depend upon results about F-spaces. We also prove \([CH]\) that all open subsets of $\beta R - R$ are F-spaces and that all open subsets of $\beta N - N$ are zero-dimensional F-spaces.

2. Background. All spaces considered are assumed to be completely regular. N is the countably infinite discrete space, R the space of reals. $C^*(X)$ denotes the ring of all bounded continuous functions from X into R. A zero-set in X is the set $Z(f)$ of zeros of a continuous function f. A cozero-set is the complement of a zero-set. Countable unions of cozero-sets are cozero-sets. A subspace S of X is C^*-embedded in X if every function in $C^*(S)$ has a continuous extension to all of X. βX denotes the Stone-Čech compactification of X, i.e., a compactification of X in which X is C^*-embedded.

The main results depend upon properties of F-spaces. Each of the following conditions characterizes X as an F-space: any two disjoint cozero-sets are completely separated in X (i.e., some function in $C^*(S)$ has a continuous extension to all of X). βX is totally disconnected. We express these conditions by saying that X is zero-dimensional. (For the requisite defini-

1 This research was supported by Air Force Contract AF 18(603)-65.
2 National Science Foundation fellow.
3 Symbols and terms are defined in §2. For additional details, see [2].
tion of dimension, see [2, Chapter 16].) If \(X \) is zero-dimensional, so is any \(C^* \)-embedded subspace.

3. Preliminary results. For any space \(Y \), \(vY \) denotes the set of all points \(p \) of \(\beta Y \) such that every zero-set in \(\beta Y \) that contains \(p \) also meets \(Y \). When \(vY = Y \), \(Y \) is said to be realcompact. All \(\sigma \)-compact spaces are realcompact [2, Chapter 8].

3.1. Lemma. If \(Y \) is locally compact and realcompact, then each zero-set in \(\beta Y - Y \) is the closure of its interior.

Remark. It suffices to prove that a nonempty zero-set \(Z \) has nonempty interior—for if \(p \in Z - \text{cl int } Z \), then some zero-set \(Z' \) disjoint from \(\text{int } Z \) contains \(p \), and \(\text{int}(Z \cap Z') \) is empty.

Proof. Since \(Y \) is locally compact, \(\beta Y - Y \) is compact and is therefore \(C^* \)-embedded in \(\beta Y \); hence \(Z = Z(f) - Y \) for some \(f \in C^*(\beta Y) \). Let \(p \in Z \). Since \(p \in vY \), there is a function \(g \) in \(C^*(\beta Y) \) that vanishes at \(p \) but nowhere on \(Y \). Define \(h = |f| + |g| \); then \(p \in Z(h) \subset Z \). Let \((y_n) \) be a sequence of distinct points in \(Y \) on which \(h \) approaches 0. Choose disjoint compact neighborhoods \(V_n \) of \(y_n \) such that \(|h(y) - h(y_n)| < 1/n \) for \(y \in V_n \). It is easy to see that there exists a function \(u \in C^*(\beta Y) \) that is equal to 1 at each \(y_n \) and equal to 0 everywhere on \(Y - \bigcup_n V_n \). If \(q \) is any point of \(\beta Y - Y \) at which \(u(q) \neq 0 \), then every neighborhood of \(q \) meets infinitely many of the compact sets \(V_n \); hence \(h(q) = 0 \). Thus \(Z(h) \) contains the nonvoid open subset \(\beta Y - Y - Z(u) \) of \(\beta Y - Y \).

Local compactness is critical: an easy example shows that the conclusion of the lemma fails for \(\beta \mathbb{Q} - \mathbb{Q} \) (\(\mathbb{Q} \) = space of rationals).

3.2. Remark. If \(Y \) is locally compact and realcompact, but not compact, then \(\beta Y - Y \) is not basically disconnected—for 3.1 would imply that it is a \(P \)-space. (See [2] for definitions and for other proofs for \(\beta \mathbb{N} - \mathbb{N} \)).

3.3. Given \(X \), let \(S \subset X \) and \(p \in X - S \). The main results will be formulated in terms of the condition

\((p, S)\): There exist a neighborhood \(V \) of \(p \) and a cozero-set \(H \subset S \) such that \(S \cap V - H \) has void interior.

Trivially, \((p, S)\) holds whenever \(p \in \text{cl } S \); and if \(S \) is a cozero-set, then \((p, S)\) holds for every \(p \in S \).

3.4. Lemma. Let \(F \) be a compact set in \(X \) such that \((p, X - F)\) holds for all \(p \in F \). Then \(\text{int } Z \subset F \subset Z \) for some zero-set \(Z \).

Proof. There exist a finite open cover \(\{V_1, \ldots, V_n\} \) of \(F \) and zero-sets \(Z_1, \ldots, Z_n \) containing \(F \) such that \(\text{int } Z_k - F \subset X - V_k \). Let
$Z_0 = \bigcap_k Z_k$; then Z_0 is a zero-set containing F and \(\text{int} Z_0 - F \subseteq X - \bigcup_k V_k \subseteq X - F \), so that $\text{cl}(\text{int} Z_0 - F)$ does not meet F. Since F is compact, it is contained in a zero-set Z' disjoint from $\text{int} Z_0 - F$ (see, e.g., [2, 3.11]). This implies that $\text{int}(Z_0 \cap Z') \subseteq F \subseteq Z_0 \cap Z'$.

3.5. Theorem. Let X be an F-space, and let $S \subseteq X$ and $p \in \text{cl} S - S$. If $S \cap V$ is open for some neighborhood V of p, and if (p, S) holds, then S is C^*-embedded in $S \cup \{p\}$.

Proof. There exist a neighborhood V of p and a cozero-set $H \subseteq S$ such that $S \cap V$ is open and is disjoint from $\text{int}(X - H)$. Given $f \in C^*(S)$, let $g \in C^*(H \cup \{p\})$ be an extension of $f|_H$ (see §2). Define h on $S \cup \{p\}$ to agree with f on S and with g at p. Since $H \cap V$ is dense in $(S \cup \{p\}) \cap V$, h is a continuous extension of f.

4. The main results.

4.1. Theorem. Let X be an F-space and let $S \subseteq X$ be a union of \aleph_1 cozero-sets S_α (in X). Then (a) S is an F-space; (b) if X is zero-dimensional, so is S; (c) if $G \subseteq S$ and $G \cap S_\alpha$ is a cozero-set in S (for each α), then G is C^*-embedded in S.

Proof. (c). We may assume that $S = \bigcup_{\alpha < \omega_1} S_\alpha$ and that $S_\alpha \subseteq S_\beta \subseteq \cdots$. Notice that every S_α is an F-space. Let $g \in C^*(G)$ be given. Put $g_\xi = g|_{G \cap S_\xi}$. Given $\alpha < \omega_1$, assume that g_ξ has been extended to $s_\xi \in C^*(S_\xi)$, for each $\xi < \alpha$, and that $s_{\alpha} \subseteq S_\beta \subseteq \cdots$. The function $U_{t < \alpha} s_t \cup g_\alpha$ is well defined and continuous on the cozero-set $U_{t < \alpha} S_t \cup (G \cap S_\alpha)$ in the F-space S_α; hence it has an extension to a function $s_\alpha \in C^*(S_\alpha)$. Finally, $U_{\alpha < \omega_1} s_\alpha$ is a continuous extension of g to all of S.

(a) If G is a cozero-set in S, then by (c), G is C^*-embedded.

(b) Completely separated sets in S are contained in disjoint cozero-sets A and B in S. Let $g \in C^*(A \cup B)$ be equal to 0 on A and to 1 on B. Note that every S_α is zero-dimensional. In the proof of (c), (with $G = A \cup B$), add to the induction hypothesis that $U_{t < \alpha} s_\xi$ is two-valued; then s_α may be taken to be two-valued.

4.2. Corollary. [CH]. All open subsets of $\beta \mathbb{R} - \mathbb{R}$ are F-spaces. All open subsets of $\beta \mathbb{N} - \mathbb{N}$ are zero-dimensional F-spaces.

Proof. Both $\beta \mathbb{R} - \mathbb{R}$ and $\beta \mathbb{N} - \mathbb{N}$ have just \aleph_0 zero-sets.

4.3. Theorem. [CH]. Let X be an F-space having just \aleph_0 zero-sets. Let S be open and let $p \in \text{cl} S - S$, and suppose that (p, S) fails. Then (a) S is not C^*-embedded in $S \cup \{p\}$; (b) $|\beta S - S| \geq \exp \exp \aleph_1$; (c) if X is zero-dimensional, there is a two-valued function in $C^*(S)$ that has no continuous extension to p.

Proof. (a). Let $(S_t)_{t < \omega_1}$ be a family of cozero-sets in X whose
union is S, and let $(V_\xi)_{\xi<\omega_1}$ be a base of zero-set-neighborhoods of p. Inductively, for each $\alpha<\omega_1$, assume that cozero-sets A_ξ and B_ξ, contained in S, have been defined for all $\xi<\alpha$. Because (p, S) fails, we can choose disjoint, nonempty cozero-sets A_α and B_α contained in $S \cap V_\alpha = \bigcup_{\xi<\alpha} (A_\xi \cup B_\xi \cup S_\xi)$.

Define $A = \bigcup_{\alpha<\omega_1} A_\alpha$, $B = \bigcup_{\alpha<\omega_1} B_\alpha$, and $G = A \cup B$. By construction, for each $\xi<\omega_1$, $G \cap S_\xi$ is the cozero-set $\bigcup_{\alpha<\xi} (A_\alpha \cup B_\alpha) \cap S_\xi$. By 4.1(c), G is C^*-embedded in S. But A and B are complementary open sets in G and each meets every neighborhood of p; therefore G is not C^*-embedded in $G \cup \{p\}$. It follows that S is not C^*-embedded in $S \cup \{p\}$.

(c) This now follows from 4.1(b).

(b) Since $|S| \leq \exp \exp |\mathbb{N}|$ (every point being an intersection of zero-sets), it is sufficient to show that $|\beta S| \leq \exp \exp |\mathbb{N}|$. Because G is C^*-embedded in S, $|\beta S| \geq |\beta G|$. Clearly, G contains a C^*-embedded copy of the discrete space D of cardinal $|\mathbb{N}|$; so $|\beta G| \geq |\beta D|$. Finally, $|\beta D| = \exp \exp |\mathbb{N}|$, as is well known.

4.4. Corollary [CH]. Let X be an F-space with just $\exp |\mathbb{N}|$ zero-sets, and let $S \subseteq X$ be open and $p \in \text{cl } S - S$. Then S is C^*-embedded in $S \cup \{p\}$ if and only if (p, S) holds.

Proof. 3.5 and 4.3(a).

4.5. Question. Suppose that X is zero-dimensional and that a dense subset S of X is not C^*-embedded in X; does there then exist a two-valued function in $C^*(S)$ with no continuous extension to X? It is easy to see that the answer is "yes" in case S itself is zero-dimensional.

4.6. Theorem [CH]. Let K be a compact F-space of the form (2.1) that has just $\exp |\mathbb{N}|$ zero-sets. (E.g., $K = \beta \mathbb{N} - \mathbb{N}$ or $K = \beta \mathbb{R} - \mathbb{R}$.) Then:

(a) No proper dense subset is C^*-embedded—i.e., the equation $\beta X = K$ has the unique solution $X = K$.

(b) The following are equivalent for an open set S:

(i) S is C^*-embedded in K.

(ii) S is a cozero-set.

(iii) (p, S) holds for all $p \in K - S$.

(c) If S is open but is not a cozero-set, then $|\beta S| \geq \exp \exp |\mathbb{N}|$.

(d) If K is totally disconnected (e.g., $K = \beta \mathbb{N} - \mathbb{N}$), and if S is open but is not a cozero-set, then there is a two-valued function in $C^*(S)$ that has no continuous extension to all of K.

Proof. We prove first that (iii) implies (ii): by 3.1, $\text{cl } \text{int } Z = Z$ for every zero-set Z in K; hence (iii) and 3.4 imply that $K - S$ is a zero-
set. Conclusions (b), (c), and (d) now follow from 4.3. Since no point of K is isolated, 3.1 shows that no point is a zero-set; by (b), the complement of a point is not C^*-embedded, and this implies (a).

4.7. Remark. Let X be a compact F-space; if $S \subseteq X$ and $|X - S| < \exp \exp N$, then S is pseudocompact (i.e., every continuous function is bounded). For if S admits an unbounded function, then S contains \mathbb{N} as a closed subset. Now, N is C^*-embedded in X [2, 14N] and so $\text{cl}_X N = \beta N$. But $X - S \supseteq \beta N - N$ and $|\beta N - N| = \exp \exp N$.

5. The space $\beta D - D$ for (uncountable) discrete D. If $A \subseteq D$ and $p \in \text{cl}_D A - D$, then $A - D$ is an open-and-closed neighborhood of p in $\beta D - D$; these sets form a base at p in $\beta D - D$. Let E_0 be the set of points of $\beta D - D$ in the closures of countable subsets of D, $E = \beta D - D - E_0$, E_1 the set of points of E in the closures of subsets of D of cardinal N. Then E_0 is countably compact and is open and dense in $\beta D - D$. Every compact subset of E_0 has an open neighborhood in E_0 homeomorphic with $\beta N - N$. Since D is an F-space, so are βD and its compact subspace E.

5.1. Theorem [CH]. If $p \in E_0$, then $\beta D - D - \{p\}$ is not C^*-embedded in $\beta D - D$.

Proof. p has an open neighborhood in E_0 homeomorphic with $\beta N - N$, and 4.6(a) applies locally.

5.2. Theorem. If S is an open subset of E_0, then either S has compact closure in E_0 or S has infinitely many limit points in E_1.

Proof. Let \mathfrak{N} be a maximal family of disjoint, countably infinite subsets N of D for which $\text{cl} N - D \subseteq S$. Since S is open, $\text{cl} \mathfrak{N} \supseteq S$. If \mathfrak{N} is countable, then $\text{cl} \bigcup \mathfrak{N} - D \subseteq E_0$. If \mathfrak{N} is uncountable, it has a subfamily \mathfrak{N}' of cardinal N. Let \mathfrak{F} be the filter on D of all sets that contain all but finitely many points of N for all but countably many $N \in \mathfrak{N}'$. Clearly, \mathfrak{F} is contained in infinitely many (in fact, $\exp \exp N$) ultrafilters \mathcal{U}. For each such \mathcal{U}, consider $p = \lim \mathcal{U}$. Because the members of \mathfrak{N}' are disjoint, every member of \mathcal{U} is uncountable; hence $p \in E$. Since \mathcal{U} contains the set $\bigcup \mathfrak{N}'$ of cardinal N, $p \in E_1$.

5.3. Lemma (Henriksen). If $p \in E - vD$; then $E - \{p\}$ is C^*-embedded in E.

Proof. 6 Since $p \in vD$, some function $f \in C^*(\beta D)$ vanishes at p but

4 It is known that if $|D|$ is smaller than the first strongly inaccessible cardinal, then $vD = D$ (see §3).

6 Due to Henriksen and Jerison; Henriksen's original proof was based on some results in the theory of lattice-ordered rings.
nowhere on \(D \). Every neighborhood of a point of \(E \) meets \(D \) in an uncountable set on which \(|f|\) is bounded away from zero. Hence \(E - Z(f) \) is a dense cozero-set in the \(F \)-space \(E \), and therefore the intermediate subspace \(E - \{ p \} \) is \(C^* \)-embedded in \(E \).

5.4. Theorem (Isbell-Jerison). If \(p \in E - vD \), then \(\beta D - D - \{ p \} \) is \(C^* \)-embedded in \(\beta D - D \).

Proof. Given \(g \in C^*(\beta D - D - \{ p \}) \), consider its restriction \(f = g|_{E - \{ p \}} \). By Henriksen's lemma, \(f \) can be extended continuously to \(p \)—say with the value 0 at \(p \). It suffices to show that \(|g|\) stays small near \(p \). Given \(\epsilon > 0 \), let \(V \) be an open-and-closed neighborhood of \(p \) such that \(|f(q)| < \epsilon \) for all \(q \in V \cap E \). Let \(S \) be the set of all points \(x \in V \cap E_0 \) such that \(|g(x)| > \epsilon \); then \(\text{cl} S \) meets \(E \) in at most the single point \(p \). To show that \(p \in \text{cl} S \), one may observe that \(S \) is open and apply 5.2. Thus, \(|g(x)| \leq \epsilon \) on the neighborhood \(V - \text{cl} S \) of \(p \).

5.5. Question. Is \(E_0 \) \(C^* \)-embedded in \(\beta D - D \)? If so, then \(E_0 \) is a zero-dimensional \(F \)-space. Note that 4.1 and [CH] yield the latter for the case \(|D| = \aleph_1 \). If \(E_0 \) is not \(C^* \)-embedded in \(\beta D - D \), then it is not \(C^* \)-embedded in \(D \cup E_0 \); this would imply that \(D \cup E_0 \) is not a normal space. In the case \(|D| = \aleph_1 \) (at least), it would also imply, by 4.5 and [CH], that some two-valued function in \(C^*(E_0) \) cannot be extended continuously to \(\beta D \).

We remark that the problem of extending two-valued functions from \(E_0 \) (for arbitrary \(D \)) can be formulated in the following way. Let \(\mathcal{Q} \) be the Boolean algebra of all subsets of \(D \), \(\mathcal{C} \) the subring of all countable subsets, and \(\mathcal{F} \) the ideal of all finite subsets. Let \(\Lambda \) be the set of all endomorphisms \(\lambda \) of \(\mathcal{C}/\mathcal{F} \) that satisfy (i): \(\lambda(x) \subseteq x \), and (ii): \(\lambda(\lambda(x)) = \lambda(x) \). Then the following are equivalent: every two-valued function in \(C^*(E_0) \) has a continuous extension to all of \(\beta D \); every \(\lambda \in \Lambda \) can be extended to \(\mathcal{Q}/\mathcal{F} \) so as to satisfy (i) and (ii).

References

University of Pennsylvania and
The Institute for Advanced Study;
University of Rochester and
The Institute for Advanced Study

This is a modification of the Isbell-Jerison argument.